PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two methods to mitigate insar-based dems vegetation impenetrability bias

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Digital elevation models (DEM), including the Shuttle Radar Topography Mission (SRTM), are used in many branches of geoscience as an ultimate dataset representing our planet’s surface, making it possible to investigate processes that are shaping our world. The SRTM model exhibits elevation bias or systematic error over forests and vegetated areas due to the microwaves’ peculiar properties that penetrate the vegetation layer to a certain depth. Numerous investigations identified that the penetration depth depends on the forest density and height. In this contribution, two methods are proposed to remove the impact of the vegetation impenetrability effect. The first method is founded on the multiple regression of two forest characteristics, namely forest height and forest density. The second method uses a lookup table approach. The lookup table and the multiple regression explanatory variables are taken from the freely available datasets, including the forest density data (MODIS_VCF) and global tree height map (GTHM). An important role in this research is played by the Ice, Clouds, and Land Elevation Satellite (ICESat) data. The accuracy tests indicate that the first method eliminates approximately 68% of the elevation bias, while the second method appears to be more effective, leading to almost complete removal of the vegetation bias from the SRTM data. The methods are fine-tuned to the local coniferous forests in Poland. Additional studies are required to finetune the methods for the leaf-off state of deciduous forests. However, a new set of parameters for both methods can be quickly developed for different locations and forest types. Both methods’ functionality and effectiveness can be improved once more accurate forest tree height and vegetation density data become available. These methods are universal in mitigating the vegetation bias from the Synthetic Aperture Radar Interferometry (InSAR) derived model and photogrammetric models.
Rocznik
Tom
Strony
7--21
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • Former postgraduate student at Wrocław University of Environmental and Life Sciences 25 Norwida Street 50-375 Wrocław, Poland
  • Wrocław University of Science and Technology Faculty of Geoengineering, Mining and Geology ul. Na Grobli 15, 50-421 Wrocław
Bibliografia
  • Abshire J.B., Sun X., Riris H., Sirota J.M., McGarry J.F., Palm S., Yi D., Liiva P. 2005. Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On-orbit measurement performance. Geophys. Res. Lett., 32(21).
  • Bailey J.E., Self S., Wooller K., Mouginis-Mark P.J. 2007. Discrimination of fluvial and eolian features on large ignimbrite sheets around La Pacana Caldera, Chile, using Landsat and SRTM-derived DEM. Rem. Sens. Env., 108(1), 24–41.
  • Baugh C.A., Bates P.D., Schumann G., Trigg M.A. 2013. SRTM vegetation removal and hydrodynamic modeling accuracy. Water Res. Res., 49, 5276–5289.
  • Beaulieu A., Clavet D. 2009. Accuracy Assessment of Canadian Digital Elevation Data Using ICESat. Photogramm. Rem. Sens., 75(1), 81–86.
  • Becek K. 2006. Accuracy Evaluation of the SRTM Topographic Data Product over Selected Sites in Australia and Brunei Darussalam. Rep. Geodesy, 77(2), 283–289.
  • Becek K. 2008a. Investigating error structure of shuttle radar topography mission elevation data product. Geophys. Res. Lett., 35(15), L1540.
  • Becek K. 2008b. Investigation of Elevation Bias of the SRTM C and X Band Digital Elevation Models. Int. Arch. Photogram. Rem. Sens. Spat. Inf. Sci., XXXVII (B1).
  • Becek K. 2011. Biomass Representation in Synthetic Aperture Radar Data Sets: A comprehensive study of biomass-induced elevation bias in DEMs derived using Synthetic Aperture Radar Interferometry. http://www.amazon.com/Biomass-Representation-Synthetic-Aperture Radar/dp/3844323422/ref=sr_1_1?s=books&ie=UTF8&qid=1397435185&sr=1-1 (accessed: 6.02.2021).
  • Becek K. 2014. Assessing Global Digital Elevation Models Using the Runway Method: The Advanced Spaceborne Thermal Emission and Reflection Radiometer Versus the Shuttle Radar. IEEE Trans. Geosc. Rem. Sens., 54(8) 4823–4831.
  • Berry P.A.M., Garlick J.D., Smith R.G. 2007. Near-global validation of the SRTM DEM using satellite radar altimetry. Rem. Sens. Envir., 106(1), 17–27.
  • Berthier E., Arnaud Y., Kumar R., Ahmad S., Wagnon P., Chevallier P. 2007. Remote sensing estimates of glacier mass balances in the Himachal Pradesh, Western Himalaya, India. Rem. Sens. Env., 108(3), 327–338.
  • Bolton D.K., Coops N.C., Wulder M.A. 2013. Investigating the agreement between global canopy height maps and airborne Lidar derived height estimates over Canada. Can. J. Rem. Sens., 39(S1), S139–S151.
  • Brenner A.C., Zwally H.J., Bentley C.R., Csatho B.M., Harding D.J., Hofton M.A., Minster J. B., Roberts L.A., Saba J.L., Thomas R.H., Yi D. 2011. Geoscience laser altimeter system algorithm theoretical basis document: Derivation of range and range distributions from laser pulse waveform analysis. Algorithm Theoretical Basis Documents (ATBD). www.csr.utexas.edu/glas/atbd.html (accessed: October 2014).
  • Brus D.J., Hengeveld G.M., Walvoort D.J.J., Goedhart P.W.A., Heidema H., Nabuurs G.J., Gunia K. 2011. Statistical mapping of tree species over Europe. Euro. Journ. Forest Res., 131(1), 145–157.
  • Carabajal C.C, Harding D.J. 2006. SRTM C-Band and ICESat Laser Altimetry Elevation Comparisons as Function of Tree Cover and Relief. Photogramm. Eng. Rem. Sens., 72(3), 287–298.
  • Carabajal C.C. 2011. ASTER Global DEM ver. 2.0 evaluation using ICESat geodetic ground control. ICESat/GSFC Validation Report. http://www.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Appendix_D_ICESat_GDEM2_validation_report.pdf (accessed: October 2014).
  • Chen Q. 2010a. Assessment of terrain elevation derived from satellite laser altimetry over mountainous forest areas using airborne Lidar data. ISPRS Photogramm. Rem. Sens., 65, 111–122.
  • Chen Q. 2010b. Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry. Rem. Sens. Env., 114, 1610–1627.
  • DiMarzio J.P. 2007. GLAS/ICESat 1 km Laser Altimetry Digital Elevation Model of Greenland. Boulder, Colorado USA: National Snow and Ice Data Center.
  • Doung H.R., Lindenberghm Pfeifer N., Vosselman G. 2009. ICESat Full-Waveform Altimetry Compared to Airborne Laser Scanning Altimetry Over The Netherlands. IEEE Trans. Geosci. Rem. Sens., 7(10) 3365–3378.
  • EEA. Corine Land Cover 2000 seamless vector data. https://www.eea.europa.eu/data-and-maps/data/clc-2000-vector-6 (accessed: 6.02.2021).
  • Farr T.G., Rosen P.A., Caro E., Crippen R., Duren R., Hensley S., Kobrick M., Paller M., Rodriguez E., Roth L., Seal D., Shaffer S., Shimada J., Umland J., Werner M., Oskin M., Burbank D., Alsdorf D. 2007. The Shuttle Radar Topography Mission. Rev. Geophys., 45(2).
  • Forkuo E.K., Tsawo V.A. 2013. The use of digital elevation models for water-shed and flood hazard mapping. Int. J. Rem. Sens. Geosc., 2(2), 56–65.
  • Fricker H.A., Borsa A., Minster B., Carabajal C.C., Quinn K., Bills B. 2005. Assessment of ICESat performance at the Salar de Uyuni, Bolivia. Geophys. Res. Lett., 32(21).
  • Geoportal. 2021. Numeryczne modele wysokościowe. https://www.geoportal.gov.pl/dane/numeryczne-modele-wysokosciowe (accessed: 6.02.2021).
  • Hayashi M., Saigusa N., Oguma H., Yamagata Y. 2013. Forest canopy height estimation using ICESat/GLAS data and error factor analysis in Hokkaido, Japan. ISPRS J. Photogramm. Rem. Sens., 81, 12–18.
  • JPL 2021. Shuttle Radar Topography Mission. http://www2.jpl.nasa.gov/srtm/ (accessed: 6.02.2021).
  • Karwel A.K., Ewiak I. 2008. Estimation of the accuracy of the SRTM terrain model on area of Poland. Int. Arch. Photogramm. Rem. Sens. Spat. Inf. Sci., XXXVII(B7).
  • Kellndorfer J., Walker W., Pierce L., Dobson C., Fites J.A., Hunsaker C., Vona J., Clutter M. 2004. Vegetation height estimation from Shuttle Radar Topography Mission and national elevation datasets. Rem. Sens. Env., 93(3), 339–358.
  • Lefsky M.A. 2010. A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System. Geophys. Res. Lett., 37(15).
  • Paiva R.C.D., Collischonn W., Tucci C.E.M. 2011. Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. J. Hydr., 406, 170–181.
  • Potapov P., Li X., Hernandez-Serna A., Tyukavina A., Hansen M.C., Kommareddy A., Pickens A., Turubanova S., Tang H., Silva C.E., Armston J., Dubayah R., Blair J.B., Hofton M. 2020. Mapping and monitoring global forest canopy height through integration of GEDI and Landsat data. Rem. Sens. Env., 253, 112165.
  • Rodríguez E., Morris C.S., Belz J.E. 2006. A Global Assessment of the SRTM Performance. Photogramm. Eng. Rem. Sens., 72(3), 249–260.
  • Schutz B.E., Zwally H.J., Shuman C.A., Hancock D., DiMarzio J.P. 2005. Overview of the ICESat Mission. Geophys. Res. Lett., 32(21).
  • Sexton J.O., Bax T., Siqueira P., Swenson J.J., Hensley S. 2009. Comparison of Lidar, Radar, and Field Measurements of Canopy Height in Pine and Hardwood Forests of Southeastern North America. Forest Ecology and Management, 257, 1136–1147.
  • Shtain Z., Filin S. 2011. Accuracy and reliability assessment of GLAS measurements over Israel. Int. Arch. Photogramm. Rem. Sens. Spat. Inf. Sci., 38(5), 247–252.
  • Simard M., Pinto N., Fisher J.B., Baccini A. 2011. Mapping forest canopy height globally with spaceborne Lidar. J. Geophys. Res., 116.
  • Simard M., Rivera-Monroy V.H., Mancera-Pineda J.E., Castaneda-Moya E., Twilley R.R. 2008. A Systematic Method for 3D Mapping of Mangrove Forests based on Shuttle Radar Topography Mission Elevation Data, ICESat/GLAS Waveforms and Field Data: Application to Ciénaga Grande De Santa Marta, Colombia. Rem. Sens. Env., 112, 2131–2144.
  • Su Y., Guo Q. 2014. A practical method for SRTM DEM correction over vegetated mountain areas. ISPRS J. Photogramm. Rem. Sens., 87, 216–228.
  • Tadono T., Ishida H., Oda F., Naito S., Minakawa K., Iwamoto H. 2014. Precise Global DEM Generation By ALOS PRISM. ISPRS Ann. Photogr. Rem. Sens. Spat. Inf. Sci., II-4, 71–76.
  • Townshend J.R.G., Carroll M., Dimiceli C., Sohlberg R., Hansen M., DeFries R. 2011. Vegetation Continuous Fields MOD44B, 2001 Percent Tree Cover, Collection 5. University of Maryland, College Park, Maryland, 2001.
  • Trojanowicz M. 2009. Estimation of an accuracy of global geopotential models EGM96 and EGM08 at lower Silesia Area. Acta Sci. Pol., Geod. Descr. Terr., 8(1).
  • Tulski S. 2014. Lidar in space. Geodeta, (5) 15–17.
  • Vassilopoulou S., Hurni L. 2001. The use of digital elevation models in emergency and socio-economic planning: A Case Study at Kos-Yali-Nisyros-Tilos Islands, Greece. Proceedings of 20th International Cartographic Conference, Beijing, China, 3424–3431.
  • Wilson M., Bates P., Alsdorf D., Forsberg B., Horritt M., Melackm J., Frappart F., Famigieltti J. 2007. Modeling large-scale inundation of Amazonian seasonally flooded wetlands. Geophys. Res. Lett., 34, L15404.
  • Wright R., Garbeil H., Baloga S.M., Mouginis-Mark P.J. 2006. An assessment of Shuttle Radar Topography Mission digital elevation data for studies of volcano morphology. Rem. Sens. Envir., 105(1), 41–53.
  • Wylie D., Elronata E., Spinhirne J.D., Palm S.P. 2007. A comparison of Cloud cover statistics from GLAS Lidar with HIRS. J. Climate, 20, 4968–4981.
  • Zwally H.J., Schutz B., Abdalati W., Abshire J., Bentley C., Brenner A., Bufton J., Dezio J., Hancock D., Harding D., Herring T., Minster B., Quinn K., Palm S., Spinhirne J., Thomas R. 2002. ICESat’s laser measurements of polar ice, atmosphere, ocean and land. J. Geodyn., 32, 405–445.
  • Zwally H.J., Li J., Brenner A.C., Beckley M., Cornejo H.G., DiMarzio J., Giovinetto M.B., Neumann T.A., Robbins J., Saba J.L., Yi D., Wang W. 2011. Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003‒07 versus 1992‒2002. J. Glac., 57(201), 88–102.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61769db1-8fb7-47e4-af9b-04c33a2aff39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.