PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Microplasma spraying of coatings from wire of heat-resistant nickel alloy Inconel 82 with laser melting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work is devoted to studying the technological capabilities of the processes of microplasma spraying of wires from heat-resistant nickel alloy Inconel 82 with further laser melting of the sprayed layers to produce narrow-path coatings during restoration of worn end faces of ribbed parts, used in nuclear engineering, aerospace and textile industry, etc. Numerical modeling by finite element method was applied to select the parameters of the modes of microplasma wire spraying and further laser melting of sprayed layers of Inconel 82 alloy. This made it possible to select the parameters of the modes with an accuracy of up to 20% (current 30-40 A at voltage 40 V, deposition speed 100 mm/min; radiation power 3.0 kW, defocusing spot 3 mm, remelting speed 750 mm/min). The value of the parameter of coating growth rate during microplasma spraying of Inconel 82 alloy wire was determined (it was equal to 1 mm of coating height / 1 cm of narrow path length / 1 min of spraying process duration). The work shows for the first time that the useful area of the microplasma spraying spot is close to the defocused laser radiation spot, ensuring unique possibilities for deposition of narrow paths and their laser remelting without hard phase burnout. This is experimentally confirmed by ~17% (290-350 HV) increase in the hardness of sprayed Inconel 82 layer (200-240 HV) during its remelting by radiation with power density of ~4.3·104 W/cm2. It was also determined that the features of structure formation during laser remelting of Inconel 82 alloy promote an enhancement of its corrosion resistance up to 1.5 times and increase in wear resistance by 20-40%, compared to sprayed coatings.
Twórcy
  • Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing, China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangzhou, 510650, China
  • E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine. 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine
autor
  • Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing, China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangzhou, 510650, China
  • Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing, China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangzhou, 510650, China
  • E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine. 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine
  • E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine. 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine
  • E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine. 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine
  • E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine. 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine
  • E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine. 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine
  • E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine. 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine
autor
  • E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine. 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine
  • E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine. 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine
Bibliografia
  • 1. Mauer G., Jarligo M.O., Marcano D., Rezanka S., Zhou D., Vaße R. Recent developments in plasma spray processes for applications in energy technology. IOP Conference Series: Materials Science and Engineering, V. 181, 19th Chemnitz Seminar on Materials Engineering – 19. Werkstofftechnisches Kolloquium 16–17 March 2017, Chemnitz, Germany. 2017; 181: 012001. https://doi.org/10.1088/1757-899X/181/1/012001.
  • 2. Korzhyk V., Khaskin V., Grynyuk A., Shcheretskiy V., Fialko N. Comparing features in metallurgical interaction when applying different techniques of arc and plasma surfacing of steel wire on titanium. Eastern-European Journal of Enterprise Technologies, 2021; 4(12–112): 6–17. https://doi.org/10.15587/1729-4061.2021.238634.
  • 3. Skorokhod A., Sviridova I., Korzhik V. Structural and mechanical properties of polyethylene terephthalate coatings as affected by mechanical pretreatment of powder in the course of preparation. Mekhanika Kompozitnykh Materialov, 1994; 30(4): 455–463. http://dx.doi.org/10.1007/978-981-19-9267-4_64.
  • 4. Volchuk V.M., Hlushkova D.B. Application of new plasma coatings for restoration of the surface of material. Functional Materials, 2024; 31(2): 205–209. http://dx.doi.org/10.15407/fm31.02.205.
  • 5. Weltmann K.-D., Kolb J.F., Holub M., Uhrlandt D., Šimek M., Ostrikov K. (Ken), Hamaguchi S., Cvelbar U., Černák M., Locke B., Fridman A., Favia P., Becker K. The future for plasma science and technology. Plasma Processes and Polymers, 2018; 16(1): 1800118.
  • 6. Fialko N.M., Prokopov V.G., Meranova N.O., Korzhik V.N., Sherenkovskaya G.P. Thermal physics of gasothermal coatings formation processes. State of investigations. Fizika i Khimiya Obrabotki Materialov, 1993; 4: 83–93.
  • 7. Fialko N.M., Prokopov V.G., Meranova N.O., Korzhik V.N., Sherenkovskaya G.P. Temperature conditions of particle-substrate systems in a gas-thermal deposition process. Fizika i Khimiya Obrabotki Materialov, 1994; 2: 59–67.
  • 8. Kavaliauskas Ž., Kėželis R., Milieška M., Marcinauskas L., Valinčius V., Aikas M., Uscila R., Baltušnikas A., Žunda A. Influence of different plasma spraying methods on the physical properties of YSZ coatings. Surfaces and Interfaces, 2021; 24: 101120. https://doi.org/10.1016/j.surfin.2021.101120.
  • 9. Mrdak M.R. Characteristics of plasma spray coatings. Vojnotehnicki glasnik, 2019; 67(1): 116–130. https://doi.org/10.5937/vojtehg67-16558.
  • 10. Fialko N., Dinzhos R., Sherenkovskii J., Lazarenko M., Koseva N. Establishing patterns in the effect of temperature regime when manufacturing nanocomposites on their heat-conducting properties. Eastern-European Journal of Enterprise Technologies, 2021; 4(5–112): 21–26. http://dx.doi.org/10.15587/1729-4061.2021.236915.
  • 11. Heimann R.B. The nature of plasma spraying. Coatings, 2023; 13(3): 622. https://doi.org/10.3390/coatings13030622.
  • 12. Kucuka A., Berndt C.C., Senturk U., Lima R.S. Deformation of plasma sprayed thermal barrier coatings. Journal of Engineering for Gas Turbines and Power, 2008; 122(3): 681–689. https://doi.org/10.1002/9780470294635.ch80.
  • 13. Borisov Y., Korzhyk V., Revo S. Electric and Magnetic Properties of Thermal Spray Coatings with an Amorphous Structure. Proceedings of the International Thermal Spray Conference, itsc1998; 687–691. https://doi.org/10.31399/asm.cp.itsc1998p0687.
  • 14. Borisov Yu., Kyslytsia O., Voynarovich S. Microplasma Wire Spraying. Conference: ITSC2004, 2004; 657–661. https://doi.org/10.31399/asm.cp.itsc2004p0657.
  • 15. Abdalameer N.Kh., Mazhir S.N., Salim H.M., Hammood J.Kh., Abdul Raheem Z.H. Design of micro-jet plasma system: a novel nanoparticles manufacturing method in atmospheric pressure. Journal of Optoelectronic and Biomedical Materials, 2022; 14(4): 203–210. https://doi.org/10.15251/JOBM.2022.144.203.
  • 16. Sytnykov P.A. Plasma coatings based on self-fluxing NiCrBSi alloy with improved wear resistance properties. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, 2023; 26(3): 54–64. https://doi.org/10.15407/pmach2023.03.054.
  • 17. Kvasnytskyi V., Korzhyk V., Kvasnytskyi V., Heorhii Mialnitsa, Dong Chunlin, Matviienko M., Buturlia Y. Designing brazing filler metal for heat-resistant alloys based on Ni3Al intermetalide. Eastern-European Journal of Enterprise Technologies, 2020; 6(12): 6–19. http://dx.doi.org/10.15587/1729-4061.2020.217819.
  • 18. Łatka L. Thermal barrier coatings manufactured by suspension plasma spraying – a review. Advances in Materials Science, 2018; 18(3): 95–117. http://dx.doi.org/10.1515/adms-2017-0044.
  • 19. Prokopov V., Fialko N., Sherenkovskaya G.P., Yurchuk V., Borisov Y., Murashov A., Korzhik V. Effect of the coating porosity on the processes of heat transfer under gas-thermal atomization. Poroshkovaya Metallurgiya, 1993; (2): 22–26.
  • 20. Odhiambo J.G., Li W.G., Zhao Y.T., Li C.L. Porosity and its significance in plasma-sprayed coatings. Coatings, 2019; 9(7): 460. https://doi.org/10.3390/coatings9070460.
  • 21. Abhinav H.K., Kustagi A.R., Shankar. Adhesion Strength of Plasma Sprayed Coatings—A Review. In: Reddy A., Marla D., Simic M., Favorskaya M., Satapathy S. (eds) Intelligent Manufacturing and Energy Sustainability. Smart Innovation, Systems and Technologies, 2020; 169. Springer, Singapore. https://doi.org/10.1007/978-981-15-1616-0_8.
  • 22. Skorokhod A.Z., Sviridova I.S., Korzhik V.N. The effect of mechanical pretreatment of polyethylene terephthalate powder on the structural and mechanical properties of coatings made from it. Mechanics of Composite Materials, 1995; 30(4): 328–334.
  • 23. Wang K.L., Zhu Y.M., Steen W.M. Laser remelting of plasma sprayed coatings. Journal of Laser Applications, 2000; 12: 175–178. https://doi.org/10.2351/1.521930.
  • 24. Li C., Han X., Zhang D., Gao X., Jia T. Quantitative analysis and experimental study of the influence of process parameters on the evolution of laser cladding. Journal of Adhesion Science and Technology, 2021; 36(17): 1894–1920. https://doi.org/10.1080/01694243.2021.1991142.
  • 25. Gu Y., Xu Y., Shi Y., Feng C., Volodymyr K. Corrosion resistance of 316 stainless steel in a simulated pressurized water reactor improved by laser cladding with chromium. Surface and Coatings Technology, 2022; 441: 128534. https://doi.org/10.1016/j.surfcoat.2022.128534.
  • 26. Gu Y., Zhang W., Xu Y., Shi Y., Volodymyr K. Stress-assisted corrosion behaviour of Hastelloy N in FLiNaK molten salt environment. npj Materials Degradation, 2022; 6(1): 90. https://doi.org/10.1038/s41529-022-00300-x.
  • 27. Li C., Wang Y., Guo L., He J. Laser remelting of plasma-sprayed conventional and nanostructured Al2O3–13 wt.%TiO2 coatings on titanium alloy. Journal of Alloys and Compounds, 2010; 506(1): 356–363. https://doi.org/10.1016/j.jallcom.2010.06.207.
  • 28. Cao Y., Yuan C., Zhang Y., Ma J. Laser cladding performance and process parameter optimization for Fe90 alloy. Metals, 2024; 14(12): 1432. https://doi.org/10.3390/met14121432.
  • 29. Afzal M., Nusair Khan A., Ben Mahmud T., Khan T.I., Ajmal M. Effect of laser melting on plasma sprayed WC-12wt.%Co coatings. Surface and Coatings Technology, 2015; 266: 22–30. https://doi.org/10.1016/j.surfcoat.2015.02.004.
  • 30. Jing H., Yu S., Gang Z., Volodymyr K. Minimizing defects and controlling the morphology of laser welded aluminium alloys using power modulation-based laser beam oscillation. J. Manufacturing Processes, 2022; 83: 49–59. https://doi.org/10.1016/j.jmapro.2022.08.031.
  • 31. Ge Y., Wang W., Wang X., Cui Z., Xu B. Study on laser surface remelting of plasma-sprayed Al–Si/1wt% nano-Si3N4 coating on AZ31B magnesium alloy. Applied Surface Science, 2013; 273: 122–127. https://doi.org/10.1016/j.apsusc.2013.01.204.
  • 32. Zhou Y., Xu L., Zheng H., Wang D. Surface modification of plasma spraying Al2O3–13 wt% TiO2 coating by laser remelting technique. Materials Research Express, 2022; 9: 056401. https://doi.org/10.1088/2053-1591/ac6a49.
  • 33. Guo K., Wang Y., Chen R. et al. Laser-induced layers peeling of sputtering coatings at 1064 nm wavelength. Scientific Reports, 2021; 11: 3783. https://doi.org/10.1038/s41598-020-80304-2.
  • 34. Dworak J., Dymek S., Kalemba-Rec I., Wrona A., Kustra K., Lis M. Laser remelting of Ni-Cr-Re plasma spraying coating. Conference: METAL 2020; 2694–9296: 846–851. https://doi.org/10.37904/metal.2020.3562.
  • 35. Liao J., Zhang L., Peng C., Jia Y., Wang G., Wang H., An X. Fabrication of Ni–Cu–W graded coatings by plasma spray deposition and laser remelting. Materials, 2022; 15(8): 2911. https://doi.org/10.3390/ma15082911.
  • 36. Laik A., Chakravarthy D.P., Kale G.B. On characterisation of wire-arc–plasma-sprayed Ni on alumina substrate. Materials Characterization, 2005; 55(2): 118–126. https://doi.org/10.1016/j.matchar.2005.04.001.
  • 37. Kelkar M., Heberlein J. Wire-arc spray modeling. Plasma Chemistry and Plasma Processing, 2002; 22: 1–25. https://doi.org/10.1023/A:1012924714157.
  • 38. Song Z., Li H. Plasma spraying with wire feeding: A facile route to enhance the coating/substrate interfacial metallurgical bonding. Coatings, 2022; 12(5): 615. https://doi.org/10.3390/coatings12050615.
  • 39. Domokos I., Pálinkás S. Application of laser remelting technology in the case of cultivator tines. Coatings, 2024; 14(5): 637. https://doi.org/10.3390/coatings14050637.
  • 40. Song Z., Li H. Plasma spraying with wire feeding: A facile route to enhance the coating/substrate interfacial metallurgical bonding. Coatings, 2022; 12(5): 615. https://doi.org/10.3390/coatings12050615.
  • 41. Yung T.-Y., Chen T.-C., Tsai K.-C., Lu W.-F., Huang J.-Y., Liu T.-Y. Thermal spray coatings of Al, ZnAl and Inconel 625 alloys on SS304L for anti‑saline corrosion. Coatings, 2019; 9(1): 32. https://doi.org/10.3390/coatings9010032.
  • 42. Adam Khan M., Sundarrajan S., Natarajan S. Influence of plasma coatings on Inconel 617 for gas turbine applications. Surface Engineering, 2014; 30(9): 656–661. https://doi.org/10.1179/17432944 14Y.000000029.
  • 43. Panneerselvam G., Raju S., Jose R., Sivasubrama­nian K., Divakar R., Mohandas E., Antony M.P. A study on the thermal expansion characteristics of Inconel‑82® filler wire by high temperature X‑ray diffraction. Materials Letters, 2004; 58(1‑2): 216–221. https://doi.org/10.1016/S0167‑577X(03)00448‑8.
  • 44. Merino‑Millan D., Múnez C.J., Garrido‑Maneiro M.Á., Poza P. Alternative low‑power plasma‑sprayed Inconel 625 coatings for thermal solar receivers: Effects of high temperature exposure on adhesion and solar absorptivity. Solar Energy Materials and Solar Cells, 2022; 245: 111839. https://doi.org/10.1016/j.solmat.2022.111839.
  • 45. Kumar S., Kumar R. Influence of processing conditions on the properties of thermal sprayed coating: a review. Surface Engineering, 2021; 37(11): 1339–1372. https://doi.org/10.1080/02670844.2021.1967024.
  • 46. Qadir D., Sharif R., Nasir R., Awad A., Mannan H.A. A review on coatings through thermal spraying. Chemical Papers, 2023; 1: 71–91. https://doi.org/10.1007/s11696-023-03089-4.
  • 47. Fialko N., Dinzhos R., Sherenkovskii J., Mankus I., Nedbaievska L. Establishment of regularities of influence on the specific heat capacity and thermal diffusivity of polymer nanocomposites of a complex of defining parameters. Eastern‑European Journal of Enterprise Technologies, 2021; 6(12(114)): 6–12. https://doi.org/10.15587/1729-4061.2021.245274.
  • 48. Anand M., Das A.K. Grain refinement in wire‑arc additive manufactured Inconel 82 alloy through controlled heat input. Journal of Alloys and Compounds, 2022; 929: 166949. https://doi.org/10.1016/j.jallcom.2022.166949.
  • 49. Panneerselvam G., Raju S., Jose R., Sivasubrama­nian K., Divakar R., Mohandas E., Antony M.P. A study on the thermal expansion characteristics of Inconel‑82® filler wire by high temperature X‑ray diffraction. Materials Letters, 2004; 58(1‑2): 216–221. https://doi.org/10.1016/S0167‑577X(03)00448‑8.
  • 50. Han Y.R., Zhang C.H., Cui X., Zhang S., Zhang J.B., Liu Y. The formability and microstructure evolution of 24CrNiMo alloy steel fabricated by selective laser melting. Vacuum, 2020; 175: 109297. https://doi.org/10.1016/j.vacuum.2020.109297.
  • 51. Zhou H., Liu Z., Luo L. Microstructural characterization of shrouded plasma‑sprayed titanium coatings. Journal of Manufacturing and Materials Processing, 2019; 3(1): 4. https://doi.org/10.3390/jmmp3010004.
  • 52. Kaiming W., Yulong L., Hanguang F., Yongping L., Zhenqing S., Pengfei M. A study of laser cladding NiCrBSi/Mo composite coatings. Surface Engineering, 2018; 34(4): 267–275. https://doi.org/10.1080/02670844.2016.1259096.
  • 53. Standard Guide for Preparation of Metallographic Specimens. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, 2011; 19428–2959. United States. https://doi.org/10.1520/E0003-11.
  • 54. Akca E., Trgo E. Metallographic procedures and analysis – A review. Periodicals of Engineering and Natural Sciences (PEN), 2015; 3(2): 9–11. https://doi.org/10.21533/pen.v3i2.51.
  • 55. Fox G.R., Liang H. Wear mode comparison of high‑performance Inconel alloys. Journal of Tribology, 2010; 132(2). https://doi.org/10.1115/1.4001170.
  • 56. Pogonyshev V.A., Torikov V.E., Mokshin I.A., Pogonysheva D.A., Boiko A.A. Leveling out the effect of sample runouts on wear when testing on the SMT‑1 friction machine, ICMTMTE 2021, MATEC Web of Conferences, 2021; 346: 03042. https://doi.org/10.1051/matecconf/202134603042.
  • 57. Khaskin V.Yu. Calculation and experimental method for determining the parameters of laser cladding processes. Science and Innovations, 2012; 8(6): 5–16.
  • 58. Xv Y., Sun Y., Zhang Y. Prediction method for high‑speed laser cladding coating quality based on random forest and adaboost regression analysis. Materials (Basel), 2024; 17(6): 1266. https://doi.org/10.3390/ma17061266.
  • 59. Korzhik V.N. Theoretical analysis of amorphization conditions for metallic alloys under gas‑thermal spraying. Transformations in the amorphized alloy under building‑up of coatings. Poroshkovaya Metallurgiya 1992; (11): 47–52.
  • 60. Zhilkashinova A., Abilev M., Zhilkashinova A. Microplasma‑sprayed V₂O₅/C double‑layer coating for the parts of mini‑hydropower systems. Coatings, 2020; 10(8): 725. https://doi.org/10.3390/coatings10080725.
  • 61. Fialko N.M., Prokopov V.G., Meranova N.O., Korzhik V.N., Sherenkovskaya G.P. Temperature conditions of particle‑substrate systems in a gas‑thermal deposition process. Fizika i Khimiya Obrabotki Materialov, 1994; 2: 59–67.
  • 62. Fauchais P., Vardelle A. Innovative and emerging processes in plasma spraying: from micro‑ to nano‑structured coatings. Journal of Physics D: Applied Physics, 2011; 44: 194011. https://doi.org/10.1088/0022-3727/44/19/194011.
  • 63. Fialko N., Dinzhos R., Sherenkovskii J., Korzhyk V., Lazarenko M., Makhrovskyi V. Influence on the thermophysical properties of nanocomposites of the duration of mixing of components in the polymer melt. Eastern‑European Journal of Enterprise Technologies, 2022; 2(5–116): 25–30. https://doi.org/10.15587/1729-4061.2022.255830.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61752ecc-f41a-4d66-ae80-bd6d3ede286a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.