Organiczne związki fosfinowe jako inhibitory korozji stali zbrojeniowej w betonie skażonym jonami chlorkowymi

Dr Magdalena Klakočar-Ciepacz, Instytut Technologii Nieorganicznej i Nawozów Mineralnych Politechniki Wrocławskiej, mgr inż. Mateusz Kotlarz, absolwent Wydziału Chemicznego Politechniki Wrocławskiej, dr hab. inż. Piotr Falewicz, Instytut Technologii Nieorganicznej i Nawozów Mineralnych Politechniki Wrocławskiej

1. Wprowadzenie

Żelbet jest materiałem szeroko stosowanym w konstrukcjach budowlanych. Jednakże agresywne środowisko powoduje szybkie obniżenie jakości i trwałości oraz czasu życia konstrukcji żelbetowych. Korozja zbrojenia stalowego jest czynnikiem determinującym trwałość konstrukcji.

Otulina betonowa stanowi dla zbrojenia środowisko wilgotne, utworzone przez ciecz zaadsorbowaną w porach. Ciecz porowa charakteryzuje się odczynem silnie alkalicznym (pH ok.12,5) i dlatego powoduje pasywację powierzchni stali zbrojeniowej. Powszechnie przyjmuje się, że do chwili zobojętnienia cieczy porowej całej otuliny przez dyfuzję składników kwaśnych z otoczenia zbrojenie jest zabezpieczone przed korozją [1]. Natomiast jony Cl⁻ dyfundujące przez ciecz porową do powierzchni stali zbrojonej powodują niszczenie warstewki pasywnej nawet przy pH ok. 12.

W celu przeciwdziałania szkodliwym procesom korozji stali zbrojeniowej stosuje się wiele technik zabezpieczających konstrukcje żelbetowe, np. ochronę katodową, realkalizację betonu, ekstrakcję chlorków, jak i ochronę inhibitorową. Jako inhibitory korozji wżerowej stosowane są jony fosforanowe, wolframianowe, chromianowe, molibdenianowe, azotany i azotyny [2–4].

W niniejszej pracy przedstawiono wyniki badań potencjodynamicznych i spektroskopii impedancyjnej (EIS) właściwości inhibitujących kwasu dietyloaminometylo-(heksametyleno-iminometylo)fosfinowego.

2. Metodyka badawcza i materiały

Do badań wykorzystano elektrody ze stali S235JR o składzie: Fe 99,37%, Mn 0,30%, Si 0,17%, C 0,090%, S 0,027%, P 0,025%. Bezpośrednio przed pomiarem elektrody były szlifowane papierem ściernym o ziarnistości 400 i 600, przemywane wodą destylowaną oraz odtłuszczane acetonem.

W badaniach zastosowano roztwór modelujący ciecz porową betonu nieskarbonatyzowanego, skażonego jonami CI⁻ (w dalszej części artykułu zwanego roztworem modelowym) o składzie: 0,02M KOH + 0,02M NaOH + 0,02M Ca(OH)₂ + 3% wag. NaCl.

Do badań użyto następujące związki:

• kwas dietyloaminometylo(heksametylenoiminometylo)fosfinowy (zwany dalej IO),

- kwas cytrynowy (zwany dalej KC),
- jony cynku w formie soli: siarczan cynku (zwany dalej SC).

Kwas dietyloaminometylo(heksametylenoiminometylo) fosfinowy (IO) należy do grupy kwasów dialkiloaminometylofosfinowych.

Pomiary potencjodynamiczne oraz spektroskopii impedancyjnej (EIS) przeprowadzono w układzie trójelektrodowym (elektroda badana ze stali S235JR, elektroda odniesienia – nasycona elektroda kalomelowa i elektroda platynowa jako elektroda pomocnicza) aparaturą do pomiarów elektrochemicznych firmy Zahner IM6e.

W trakcie badań potencjodynamicznych elektrodę badaną polaryzowano w zakresie ok. +/- 250 mV od wartości ustalającego się potencjału stacjonarnego (ok. 30 min.). Wyniki pomiarów potencjodynamicznych przedstawiono w postaci krzywych polaryzacyjnych, natomiast wyniki badań impedancyjnych w formie wykresów Bodego.

Za pomocą programu obliczeniowego I/E wyznaczono wartości potencjału (E_{kor}), gęstości prądu korozyj-

inhibitujących korozję stali									
Badany roztwór	E _{kor} [mV]	i _{kor} [µA/cm²]	β _a [mV/dec]	β _c [mV/dec]	H _t [mm/rok]	S _k [%]			
Roztwór modelowy	-526,8	3,20	78,3	-150	0,035	-			
Boztwór modelowy + 30 mg/dm ³ IO	_474 1	2 29	61.0	-70.0	0.027	24.2			

1,16

-612.1

Tabela 1. Wyniki badań potencjodynamicznych dla stali S235JR w roztworze modelowym bez i z dodatkami substancji inhibitujących korozję stali

Roztwór modelowy+30 mg/dm³ IO +

30 mg/dm³ KC + 30 mg/dm³ SC

Rys. 2. Krzywa polaryzacyjna dla stali S235JR w roztworze modelowym

nego (i_{kor}) oraz nachylenia tafelowskie $\beta_a i \beta_c$. Na podstawie uzyskanych wyników możliwe było wyliczenie szybkości korozji (H_t) i skuteczności ochrony antykorozyjnej (S_k) [5].

Szybkość korozji H, [mm/rok]:

$$H_t = 1,123 \cdot k \cdot i \tag{1}$$

gdzie: i – gęstość prądu korozyjnego [A/m²], k – równoważnik elektrochemiczny żelaza [g/Ah], 1,123 – współczynnik przeliczeniowy.

Skuteczność ochrony antykorozyjnej Ski:

$$S_k = \frac{i_{kor} - i_{inch}}{i_{kor}} \cdot 100 \tag{2}$$

gdzie: i_{kor} – gęstość prądu korozji w roztworze modelowym [A/m²], i_{inh} – gęstość prądu korozji w roztworze modelowym z badanym inhibitorem [A/m²].

Pomiar EIS rozpoczynano po wcześniejszym wprowadzeniu wielkości sterujących procesem pomiarowym (maks. zakres częstotliwości od 10⁶ Hz do 10⁻² Hz, wartość amplitudy 10 mV, pomiar przy potencjale stacjonarnym).

Przy analizie widm impedancyjnych przyjęto następujące oznaczenia: E [V] – potencjał korozyjny badanej elektrody; R₀ [Ω cm²] – rezystancja elektrolitu; R₁ [k Ω cm²] – rezystancja przeniesienia ładunku przez warstwę podwójną; Y₀ [μ F/cm²] – pojemnościowy ele-

-26.9

0,014

61.6

53.8

Rys 3. Krzywe polaryzacyjne dla stali S235JR w roztworze modelowym z dodatkiem IO, KC i SC

ment stałej fazy związany z pojemnością warstwy podwójnej (Y₀ = C(x/d) [F], gdzie C – pojemność warstwy, x – głębokość penetracji warstwy, d – grubość warstwy); α – pojemnościowy element stałofazowy związany z porowatością warstwy (α = 1-x/d); W – impedancja Warburga.

3. Wyniki badań i dyskusja

Wyniki przeprowadzonych badań potencjodynamicznych zostały przedstawione w tabeli 1.

Najlepszy efekt ochrony antykorozyjnej uzyskano dla mieszaniny o składzie: 30 mg/dm³ IO + 30 mg/dm³ KC + 30 mg/dm³ SC. Najniższa gęstość prądu jaką otrzymano podczas tych badań wynosiła 1,16 μ A/cm². Na podstawie rysunku 3 oraz tabeli 1 można wnioskować, że mieszanina wymienionych związków wykazuje dobre właściwości ochrony antykorozyjnej H_t = 0,014 mm/rok. Przesunięcie potencjału korozyjnego w stronę bardziej ujemną oraz zmiany wartości nachyleń β_a i β_c świadczą o katodowo-anodowym charakterze działania mieszaniny inhibitującej.

Na podstawie uzyskanych wyników pomiarów EIS oraz danych literaturowych [6, 7] do opisu procesu przyjęto przedstawiony na rysunkach 4 i 5 elektryczny model zastępczy odpowiadający złożonej strukturze beton – stal zbrojeniowa w środowisku zawierającym chlorki.

Wyniki badań EIS uzyskane dla stali S235JR w roztworze modelowym wskazują na powstawanie umiarkowanie porowatej warstewki ochronnej na powierzchni **Tabela 2.** Wyniki pomiarów impedancyjnych dla stali S235JR w roztworze modelowym bez dodatków i z dodatkami substancji inhibitujących korozję stali

Podonu rotućr	Ek _{or}	R1 [kΩ×cm²]	CPE1	RO	
Baually loziwol	[V]		Y ₀₁ [μF×cm ⁻²]	α ₁	[Ω ×cm ²]
Roztwór modelowy	-0,527	1,195	22,65	0,709	3,565
Roztwór modelowy + 30 mg/dm ³ IO + + 30 mg/dm ³ KC + 30 mg/dm ³ SC	-0,612	2,662	36,37	0,815	5,467

CPF

Rys. 4. Wykres Bodego oraz elektryczny model zastępczy dla stali S235JR w roztworze modelowym

badanej elektrody ($\alpha < 0.8$) (tab. 2) [7]. Niska wartość R_{p} świadczy o łatwym zachodzeniu procesów korozyjnych i możliwości wydzielania się jego produktów na powierzchni badanej próbki stalowej (rys. 4 i tab. 2). Natomiast w roztworze modelowym zawierającym 30 mg/ dm³ IO + 30 mg/ dm³ KC + 30 mg/dm³ SC, można zauważyć wzrost wartości impedancji dla niskich częstotliwości do około 3 k Ω oraz wzrost współczynnika $\alpha > 0.8$ (rys. 5 i tab. 2), co sugeruje uszczelnienie powstałej na elektrodzie ze stali S235JR warstewki ochronnej.

4. Podsumowanie

Badania przeprowadzone dla stali S235JR w roztworze modelowym z dodatkiem następujących związków inhibitujących: kwas dietyloaminometylo(heksametylenoiminometylo)fosfinowy, kwas cytrynowy i siarczan cynku wykazały, że ich mieszanina przy stężeniu 30 mg/dm³

Rys. 5. Wykres Bodego oraz elektryczny model zastępczy dla stali S235JR w roztworze modelowym z dodatkiem IO, KC i SC

każdego ze składników, daje efekt synergiczny (tab. 1). Skuteczność antykorozyjna mieszaniny wynosi około 61,6%. Przesunięcie wartości potencjału korozyjnego w stronę wartości bardziej ujemnych oraz zmiana wartości nachyleń tafelowskich β_a i β_c (tab.1 oraz rys. 2 i 3) może świadczyć o mieszanym (katodowo-anodowym) charakterze działania tej mieszaniny.

BIBLIOGRAFIA

- [1] Tutti K., Corrosion of Steel in Cement, Sweedish Cement and Concrete Research Institute, 1982
- [2] Kubo J., Tanaka Y., Page C. L., Page M. M., Construction and Building Materials, 39, 2013, p. 2

[3] Shi J., Sun W., Internatiol Journal of Minerals, Mettalurgy and Materials vol. 19, No 1, 2012, p. 38

[4] Criado M., Monticelli C., Fajardo S., Gelli D., Grassi V., Bastides J. M., Construction and Building Materials, 35, 2012, p. 30

[5] Głuszek J. i wsp., Ćwiczenia rachunkowe z korozji i ochrony przed korozją, PWr, Wrocław, 1990

[6] Królikowski A., Fleszar A., Ochrona przed Korozją, Nr 11s/a/2005, s. 274
[7] Dhouibi-Hachani L., Triki E., Grandem J., Raharinaivo A., Cement and Conc. Res., 26, 2, 1996, p. 253

Archiwum od ręki archiwalne spisy treści na stronach www