PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Design of a visible dual broadband nearly perfect absorber

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many optical systems benefit from elements that can absorb a broad range of wavelengths over a wide range of angles, independent of polarization. In this paper, we present a nearly perfect absorber with dual broadband and polarization-independent in the visible regime that exploits strong symmetric and asymmetric resonance modes of electromagnetic dipoles. It makes use of a bilayer hollowed-out cross pattern structure which is simple, having five layers that include two stacks of metal film with hollowed-out ribbon in cross patterns, two dielectric spacers, and a metal reflecting layer. Simulations show that the design exhibits a significantly enhanced absorption property when compared to a device with a normal cross pattern structure. The nearly perfect absorption efficiency of the device is above 98.5% at two resonances regimes: from 5.57 × 1014to 6.08 × 1014Hz and from 6.75 × 1014to 7.05 × 1014Hz, and its stable absorption characteristics can be maintained over a wide range of polarizing angle – up to ±90°. This strategy can, in principle, be applied to other material systems and could be useful in diverse applications, including thermal emitters, photovoltaics, and photodetectors.
Czasopismo
Rocznik
Strony
115--124
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
autor
  • School of Mathematics and Physics, Bohai University, Liaoning, Jinzhou 121013, China
Bibliografia
  • [1] XU T., WU Y.-K., LUO X., GUO L.J., Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging, Nature Communications 1, 2010, article ID 59, DOI: 10.1038/ncomms1058.
  • [2] WU Y.-K.R., HOLLOWELL A.E., ZHANG C., GUO L.J., Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit, Scientific Reports 3, 2013, article ID 1194, DOI: 10.1038/srep01194.
  • [3] ROSENBERG J., SHENOI R.V., VANDERVELDE T.E., KRISHNA S., PAINTER O., A multispectral and polarization-selective surface-plasmon resonant midinfrared detector, Applied Physics Letters 95(16), 2009, article ID 161101, DOI: 10.1063/1.3244204.
  • [4] YU Z., VERONIS G., FAN S., BRONGERSMA M.L., Design of midinfrared photodetectors enhanced by surface plasmons on grating structures, Applied Physics Letters 89(15), 2006, article ID 151116, DOI: 10.1063/1.2360896.
  • [5] PANOIU N.C., OSGOOD R.M., Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes, Optics Letters 32(19), 2007, pp. 2825–2827, DOI: 10.1364/ OL.32.002825.
  • [6] CATCHPOLE K.R., POLMAN A., Plasmonic solar cells, Optics Express 16(26), 2008, pp. 21793–21800, DOI: 10.1364/OE.16.021793.
  • [7] NAKAYAMA K., TANABE K., ATWATER H.A., Plasmonic nanoparticle enhanced light absorption in GaAs solar cells, Applied Physics Letters 93(12), 2008, article ID 121904, DOI: 10.1063/1.2988288.
  • [8] LIU N., MESCH M., WEISS T., HENTSCHEL M., GIESSEN H., Infrared perfect absorber and its application as plasmonic sensor, Nano Letters 10(7), 2010, pp. 2342–2348, DOI: 10.1021/nl9041033.
  • [9] TITTL A., MAI P., TAUBERT R., DREGELY D., LIU N., GIESSEN H., Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing, Nano Letters 11(10), 2011, pp. 4366–4369, DOI: 10.1021/nl202489g.
  • [10] MAHJOURI-SAMANI M., ZHOU Y.S., HE X.N., XIONG W., HILGER P., LU Y.F., Plasmonic-enhanced carbon nanotube infrared bolometers, Nanotechnology 24(3), 2013, article ID 035502, DOI: 10.1088/ 0957-4484/24/3/035502.
  • [11] HUO F., ZHENG G., LIAO X., GIAM L.R., CHAI J., CHEN X., SHIM W., MIRKIN C.A., Beam pen lithography, Nature Nanotechnology 5(9), 2010, pp. 637–640, DOI: 10.1038/nnano.2010.161.
  • [12] DIEM M., KOSCHNY T., SOUKOULIS C.M., Wide-angle perfect absorber/thermal emitter in the terahertz regime, Physical Review B 79(3), 2009, article ID 033101, DOI: 10.1103/PhysRevB.79.033101.
  • [13] ABBAS M.N., CHENG C.W., CHANG Y.C., SHIH M.H., CHEN H.H., LEE S.C., Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2, Applied Physics Letters 98(12), 2011, article ID 121116, DOI: 10.1063/1.3571442.
  • [14] HE L., JIANG C., RUSLI, LAI D., WANG H., Highly efficient Si-nanorods/organic hybrid core-sheath heterojunction solar cells, Applied Physics Letters 99(2), 2011, article ID 021104, DOI: 10.1063/ 1.3610461.
  • [15] MUSKENS O., RIVAS J.G., ALGRA R.E., BAKKERS E.P.A., LAGENDIJK A., Design of light scattering in nanowire materials for photovoltaic applications, Nano Letters 8(9), 2008, pp. 2638–2642, DOI: 10.1021/nl0808076.
  • [16] LIN C., POVINELLI M.L., Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications, Optics Express 17(22), 2009, pp. 19371–19381, DOI: 10.1364/OE.17.019371.
  • [17] FANG H., LI X., SONG S., XU Y., ZHU J., Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications, Nanotechnology 19(25), 2008, article ID 255703, DOI: 10.1088/0957 -4484/19/25/255703.
  • [18] KELZENBERG M.D., TURNER-EVANS D.B., KAYES B.M., FILIER M.A., PUTNAM M.C., LEWIS N.S., ATWATER H.A., Photovoltaic measurements in single-nanowire silicon solar cells, Nano Letters 8(2), 2008, pp. 710–714, DOI: 10.1021/nl072622p.
  • [19] STELZNER T., PIETSCH M., ANDRÄ G., FALK F., OSE E., CHRISTIANSEN S., Silicon nanowire-based solar cells, Nanotechnology 19(29), 2008, article ID 295203, DOI: 10.1088/0957-4484/19/29/295203.
  • [20] HU L., CHEN G., Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications, Nano Letters 7(11), 2007, pp. 3249–3252, DOI: 10.1021/nl071018b.
  • [21] ZHU J., YU Z., BURKHARD G.F., HSU C.M., CONNOR S.T., XU Y., WANG Q., MCGEHEE M., FAN S., CUI Y., Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays, Nano Letters 9(1), 2009, pp. 279–282, DOI: 10.1021/nl802886y.
  • [22] LI J., YU H., WONG S.M., ZHANG G., SUN X., LO P.G.Q., KWONG D.L., Si nanopillar array optimization on Si thin films for solar energy harvesting, Applied Physics Letters 95(3), 2009, article ID 033102, DOI: 10.1063/1.3186046.
  • [23] HUANG Y.F., CHATTOPADHYAY S., JEN Y.J., PENG C.Y., LIU T.A., HSU Y.K., PAN C.L., LO H.C., HSU C.H., CHANG Y.H., LEE C.S., CHEN K.H., CHEN L.C., Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures, Nature Nanotechnology 2(12), 2007, pp. 770–774, DOI: 10.1038/nnano.2007.389.
  • [24] HAN S., CHEN G., Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics, Nano Letters 10(3), 2010, pp. 1012–1015, DOI: 10.1021/nl904187m.
  • [25] CU Y., FUNG K.H., XU J., MA H., JIN Y., HE S., FANG N.X., Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab, Nano Letters 12(3), 2012, pp. 1443–1447, DOI: 10.1021/ nl204118h.
  • [26] LIANG Q., WANG T., LU Z., SUN Q., FU Y., YU W., Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting, Advanced Optical Materials 1(1), 2013, pp. 43–49, DOI: 10.1002/adom.201200009.
  • [27] AGARWAL S., PRAJAPATI Y.K., SINGH V., SAINI J.P., Polarization independent broadband metamaterial absorber based on tapered helical structure, Optics Communications 356, 2015, pp. 565–570, DOI: 10.1016/j.optcom.2015.08.055.
  • [28] AGARWAL S., PRAJAPATI Y.K., Analysis of metamaterial-based absorber for thermo-photovoltaic cell applications, IET Optoelectronics 11(5), 2017, pp. 208–212, DOI: 10.1049/iet-opt.2016.0169.
  • [29] CAI W., SHALAEV V., Optical Metamaterials: Fundamentals and Applications, Springer, New York 2010, DOI: 10.1007/978-1-4419-1151-3.
  • [30] DONG W., QIU Y., YANG J., SIMPSON R.E., CAO T., Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings, The Journal of Physical Chemistry C 120(23), 2016, pp. 12713–12722, DOI: 10.1021/acs.jpcc.6b01080.
  • [31] CAO T., WEI C.W., SIMPSON R.E., ZHANG L., CRYAN M.J., Broadband polarization-independentperfect absorber using a phase-changemetamaterial at visible frequencies, Scientific Reports 4(2), 2014, article ID 3955, DOI: 10.1038/srep03955.
  • [32] CAO T., ZHANG L., SIMPSON R.E., CRYAN M.J., Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial, Journal of the Optical Society of America B 30(6), 2013, pp. 1580–1585, DOI: 10.1364/JOSAB.30.001580.
  • [33] CAO T., WANG S., WEI C.W., Simulation of tunable metamaterial perfect absorber by modulating Bi2Se3 dielectric function, Materials Express 6(1), 2016, pp. 45–52, DOI: 10.1166/mex.2016.1277.
  • [34] CAO T., WEI C., SIMPSON R.E., ZHANG L., CRYAN M.J., Rapid phase transition of a phase-change metamaterial perfect absorber, Optical Materials Express 3(8), 2013, pp. 1101–1110, DOI: 10.1364/ OME.3.001101.
  • [35] ULBRICH C., PETERS M., BLÄSI B., KIRCHARTZ T., GERBER A., RAU U., Enhanced light trapping in thin -film solar cells by a directionally selective filter, Optics Express 18(S2), 2010, pp. A133–A138, DOI: 10.1364/OE.18.00A133.
  • [36] LANDY N.I., SAJUYIGBE S., MOCK J.J., SMITH D.R., PADILLA W.J., Perfect metamaterial absorber, Physical Review Letters 100(20), 2008, article ID 207402, DOI: 10.1103/PhysRevLett.100.207402.
  • [37] AVITZOUR Y., URZHUMOV Y.A., SHVETS G., Wide-angle infrared absorber based on a negative-index plasmonic metamaterial, Physical Review B 79(4), 2009, article ID 045131, DOI: 10.1103/PhysRevB.79.045131.
  • [38] HEDAYATI M.K., JAVAHERIRAHIM M., MOZOONI B., ABDELAZIZ R., TAVASSOLIZADEH A., CHAKRAVADHANULA V.S.K., ZAPOROJTCHENKO V., STRUNKUS T., FAUPEL F., ELBAHRI M., Design of a perfect black absorber at visible frequencies using plasmonic metamaterials, Advanced Materials 23(45), 2011, pp. 5410 –5414, DOI: 10.1002/adma.201102646.
  • [39] ZHU P., GUO L.J., High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack, Applied Physics Letters 101(24), 2012, article ID 241116, DOI: 10.1063/1.4771994.
  • [40] ALVES F., KEARNEY B., GRBOVIC D., LAVRIK N.V., KARUNASIRI G., Strong terahertz absorption using SiO2 /Al based metamaterial structures, Applied Physics Letters 100(11), 2012, article ID 111104, DOI: 10.1063/1.3693407.
  • [41] MO MAN-MAN, WEN QI-YE, CHEN ZHI, YANG QING-HUI, QIU DONG-HONG, LI SHENG, JING YU-LAN, ZHANG HUAI-WU, Strong and broadband terahertz absorber using SiO2-based metamaterial structure, Chinese Physics B 23(4), 2014, article ID 047803, DOI: 10.1088/1674-1056/23/4/047803.
  • [42] YE Y.Q., JIN Y., HE S., Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime, Journal of the Optical Society of America B 27(3), 2010, pp. 498–504, DOI: 10.1364/JOSAB.27.000498.
  • [43] JIA X., WANG X., YUAN C., MENG Q., ZHOU Z., Novel dynamic tuning of broadband visible metamaterial perfect absorber using graphene, Journal of Applied Physics 120(3), 2016, article ID 033101, DOI: 10.1063/1.4956437.
  • [44] ZHOU J., DONG J., WANG B., KOSCHNY T., KAFESAKI M., SOUKOULIS C.M., Negative refractive index due to chirality, Physical Review B 79(12), 2009, article ID 121104(R), DOI: 10.1103/PhysRevB.79.121104.
  • [45] JIA X., WANG X., Design of a polarization-independent, wide-angle, broadband visible absorber, Journal of Modern Optics 65(2), 2018, pp. 129–135, DOI: 10.1080/09500340.2017.1380240.
  • [46] LI J., YU P., TANG C., CHENG H., LI J., CHEN S., TIAN J., Bidirectional perfect absorber using free substrate plasmonic metasurfaces, Advanced Optical Materials 5(12), 2017, article ID 1700152, DOI: 10.1002/adom.201700152.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-616a983d-97c8-45e4-b1fe-d0411334d76b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.