PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Gaussian cubature to model two-dimensional population balances

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In many systems of engineering interest the moment transformation of population balance is applied. One of the methods to solve the transformed population balance equations is the quadrature method of moments. It is based on the approximation of the density function in the source term by the Gaussian quadrature so that it preserves the moments of the original distribution. In this work we propose another method to be applied to the multivariate population problem in chemical engineering, namely a Gaussian cubature (GC) technique that applies linear programming for the approximation of the multivariate distribution. Examples of the application of the Gaussian cubature (GC) are presented for four processes typical for chemical engineering applications. The first and second ones are devoted to crystallization modeling with direction-dependent two-dimensional and three-dimensional growth rates, the third one represents drop dispersion accompanied by mass transfer in liquid-liquid dispersions and finally the fourth case regards the aggregation and sintering of particle populations.
Rocznik
Strony
393--409
Opis fizyczny
Bibliogr. 20 poz., wykr., tab.
Twórcy
autor
  • Warsaw University of Technology, Department of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
  • Warsaw University of Technology, Department of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
  • Centre de Recherche et d’Innovation de Lyon, Solvay, 85 Avenue des Frères Perret, BP 62, 69192 Saint-Fons Cedex, France
Bibliografia
  • 1. Bałdyga J., Bourne J.R., 1993. Drop breakup and intermittent turbulence. J. Chem. Eng. Jpn., 26, 738-741. DOI: 10.1252/jcej.26.738.
  • 2. Bałdyga J., Bourne J.R., 1995. Interpretation of turbulent mixing using fractals and multifractals. Chem. Eng. Sci., 50, 381-400. DOI: 10.1016/0009-2509(94)00217-F.
  • 3. Bałdyga J., Podgórska W., 1998. Drop break-up in intermittent turbulence: maximum stable and transient sizes of drops. Can. J. Chem. Eng., 76, 456-470. DOI: 10.1002/cjce.5450760316.
  • 4. Batchelor G.K., 1980. Mass transfer from small particles suspended in turbulent fluid. J. Fluid Mech., 98, 609- 623. DOI: 10.1017/S0022112080000304.
  • 5. Borchert C., Nere N., Ramkrishna D., Voigt A., Sundmacher K., 2009. On the prediction of crystal shape distributions in a steady-state continuous crystallizer. Chem. Eng. Sci., 64, 686-696. DOI: 10.1016/j.ces.2008.05.009.
  • 6. Brändström A., 1966. On the existence of acid salts of monocarboxylic acids in water solutions. Acta Chem. Scand., 20, 1335-1343. DOI: 10.3891/acta.chem.scand.20-1335.
  • 7. DeVuyst E.A., Preckel P.V, 2007. Gaussian cubature: A practitioner’s guide. Math. Comput. Modell., 45, 787– 794. DOI: 10.1016/j.mcm.2006.07.021.
  • 8. Golub G.H., Welsch J.H., 1969. Calculation of Gauss quadrature rules. Math. Comput. 23, 221-230. DOI: 10.1090/S0025-5718-69-99647-1.
  • 9. Gordon R.G., 1968. Error bounds in equilibrium statistical mechanics. J. Math. Phys. 9, 655-663. DOI: 10.1063/1.1664624.
  • 10. Gunawan R., Fusman I., Braatz R.D., 2004. High resolution algorithms for multidimensional population balance equations. AIChE J., 50, 2738-2749. DOI: 10.1002/aic.10228.
  • 11. Hill P.J., Ng, K.M., 1995. New discretization procedure for the breakage equation. AIChE J., 41, 1204-1216. DOI: 10.1002/aic.690410516.
  • 12. Hulburt H.M., Katz S., 1964. Some problems in particle technology. A statistical mechanical formulation. Chem. Eng. Sci., 19, 555-574. DOI: 10.1016/0009-2509(64)85047-8.
  • 13. Marchisio D.L., Fox R.O., 2005. Solution of population balance equations using direct quadrature method of moments. J. Aerosol Sci., 36, 43-73. DOI: 10.1016/j.jaerosci.2004.07.009.
  • 14. McGraw R., 1997. Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol., 27, 255-265. DOI: 10.1080/02786829708965471.
  • 15. Okamoto Y., Nishikawa M., Hashimoto K., 1981. Energy dissipation rate distribution in mixing vessels and its effects on liquid-liquid dispersion and solid-liquid mass transfer. International Chemical Engineering, 21, 88- 94.
  • 16. Sack R.A., Donovan A.F., 1972. An algorithm for Gaussian quadrature given modified moments. Numer. Math. 18, 465-478. DOI: 10.1007/BF01406683.
  • 17. Sen M., Chaudhury A., Singh R., Ramachandran R., 2014. Two-dimensional population balance model development and validation of a pharmaceutical crystallization process. Am. J. Mod. Chem. Eng., 1, 13-29.
  • 18. Silva J.E., Paiva A.P., Soares D., Labrincha A., Castro F., 2007. Crystallization from solution, In Trends in Hazardous Materials Research. Nova Science Publishers, New York.
  • 19. Sorgato, I., 1983. Statistical approach to kinetics. Università Degli Studi di Padova- -Istituto di Impianti Chimici, Antoniana S.p.A, Padova, Italy .
  • 20. Wright D.L., McGraw R., Rosner D.E., 2001. Bivariate extension of the quadrature method of moments for modeling simultaneous coagulation and sintering of particle populations. J. Colloid Interface Sci., 236, 242-251. DOI: 10.1006/jcis.2000.7409.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-616934e1-ced1-419c-a8dd-0696f90de345
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.