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TIME OPTIMAL CONTROL
FOR A TWO-DIMENSIONAL LINEAR SYSTEM
WITH A FIRST ORDER STATE CONSTRAINT

Abstract
This paper provides an analysis of time optimaltdnproblem of motion of a material point
along a horizontal axis, without friction. The pbia controlled by a power directed along this axis
An absolute value of the power is limited by orfee VYelocity in the reverse direction is also lirdite
In the analysis of this problem, the maximum pplecis applied.

INTRODUCTION

We consider the following optimization problem. Aatarial point (a trolley) of the mass
equal to one moves along the horizontal axis wittfaation. The point is controlled by a
power directed along the same axis. An absolutgevaf the power is limited by one. Let the
position of the point at timeé be x(t) and its velocityy(t) . Let the value of the power at time

t be u(t). A movement in the reverse direction with the e#lp exceedinga>0 is
forbidden. Al the initial timet =0, the initial position x(0)=x, and the initial velocity

y(0) =y, are given. Also, at the final time=T , the final positionx(T) = x and the final

velocity y(T) =y are given. It is necessary to minimize the timethef process. Since
m=1, by the Newton law we have

u(t) = X0 = (1 .

Thus, the problem has the form:

T - min, (2)
subject to the constraints

(1) = y(9, ¥(9=u, 2)

X(0)=%, Y(0)= % ®3)

x(M)=x%, y(T)=y (4)

|u(t)|sl, y(t)=-a (5)

Here x ,y UOR . We assume that the control variabi@) is measurable and bounded and the
state variablesx(t) and y(t) are absolutely continuous. Singe=u, the state constraint
y = —ahas the order one.

The first version of this problem appeared in tbhelbof |. S. Pontryagin et al. [6], but, in
this book, it was considered only the case, whgre=y, =0, and there was no state
constraint of the formy t(2 —a. The problem with the state constrant X-}a was briefly
analyzed in the book of V. M. Tikhomirov and A. Dffe [2], but again in the case, where
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X =Yy, =0. The problem with arbitraryx, and y, and without state constraints was

analyzed in the book of A. A. Milyutin and N. P.@aslovskii [5]. We will give a detailed
analysis of the above problem.

1. MAXIMUM PRINCIPLE

Let a process
7 = (x(), y(v), u([t0[ 0,7])
be a solution to the problem. We assume that
y(0)>-a, y(T)>-a (6)
Let us formulate the first order necessary optitpalonditions for the procesB, or the

maximum principle in the Dubovitskii-Milyutin formef. [1], [3], [4]. We introduce the
Pontryagin functior{or theHamiltonian):

H=¢,y+y,u (7)
And the augmented Pontryagin function (or the augetHamiltonian):
— d
H =y +p,u+ 2 (y+ 3 ®)

(where(jj—’f[l is generalized derivative). The maximum principtenditions are the following:

on the interval0,T], there exist functions of bounded variatign(t),¢, (t) and a Lebesgue

— Stielties measuraly (defined by a function of a bounded variatign) such that the
following conditions hold:

a) non-triviality condition the triple(sz(t),zpy(t),d/,l(t)) IS nontrivial;

b) non-positivity condition

du(t)=0 9
c) complimentary slackness condition
du(t)(y(t)+a) =0, (10)
d) adjoint equalitions
4 O =H, = -¢,(1)=0, (11)
—dy, () =H,dt = —dp () =¢,(9dt+ du(), 12)

e) condition of the maximum of the Pontryagin function
maxy, ¢ V=, (u(),

Vi -1,1]
or in the equivalent form

{13, t//)(t) >0
ut)OSigny, ¢) =< {1, @, (9 <0, (13)
[-11], ¢,@t)=0,
f) constancy and non-negativeness of the Pontryagictifun for the optimal process:
Q) yt) +¢,(Hu(t) = cons 0. (14)
Let us study properties of extremals of the problem

2. ANALYSIS OF THE CONDITIONS OF THE MAXIMUM
PRINCIPLE: THE MOVEMENT INSIDE THE STATE CONSTRAINT

Let a process
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7 :=(x(0), y(t), u(|t0[ 0,T])
be an extremal of the problem, i.e., the conditiohthe maximum principle hold. Set
M, ={tO[0,T]| y(t) =-4a}.
It is clear thatM, is a closed and bounded set. Consequently,is a compact (possibly
empty) subset of the intervfd, T]. We call M, thecontact set with the boundary of the state

constraint
Let us consider an intervdl,t,) 0[0,T], (t,<t,) such thaty(t)>-a on this interval.

According to assumption (6), such interval exiBi complementary slackness condition (10)
we have: du(t)=0 for all tO(t,t,). Consequently, on the intervdt,t), the extremal

satisfies the well-known system of conditions:

Let us study the expended system on an inte&va[0,T]:
“¢,(t)=0, -¢,0)=y,),
x(t) = y(1), Y= u9OSigny, (1).
If ¢, (t)=0 on the interval(t,,t,), then the controli(t) can be chosen arbitrary on this
interval. In this case, we say thag,t,) is an interval obingular regime
LEMMA 3.1 There is no interva(t,,t,) O[0,T]\ M, of singular regime in the problem
Proof. Assume the contrary. Le, (t)=0 on the interval(t,t,) J[0,T]\M,. Then the
equation-¢,(t)=00on [0,T] implies thaty, =const on [0,T]and the equatiory, (t) =¢,(t),
satisfied on(t,,t,), implies thaty, (t) =0 on [0,T]. Then from adjoint equation (12) it follows

that
-dy, =du=0 (15)

on [0,T]. Consequently, the functiag, (t) is non-increasing on the whole interjalT], and
moreover,y,(t) =0 on (t,.t,). If du is the zero measure, then cleagly(t)is zero function,

and hence the triplefwx,z//y,d,u) is trivial )i.e., equal to zero), which contradidtse non-
triviality condition.
Consequently,
du#0 (16)
and then the set1, is nonempty.
Let
t=minf{ttOM,}, t'= ma{t {0M,)
Since M, is compact set, the minimum and the maximum irseéh®rmulas are attained.
Conditions (15) and (16), together with complemgngackness condition (10 imply that
w,(t-0)>y, (t"+0) (17)
Sincey, (t)=0 on (t,,t,), the inclusion(t',t") O (t,.t,) is impossible; consequently, either (i)
t'<t,, or (ii) t,<t". Consider each of the two possible cases.

(i) Suppose thatt's<t,. Then ¢, (t'-0)>y, (t,+0)=0. Let us show that the strict
inequality ¢, (t'—0) >0 does not hold. Indeed, i, (t'-0) >0, theny, (t)>0 in some
left half-neighborhood of the point’ and then y(t)=u(t)=1 in the same half-
neighborhood, but the latter means tigét) < y(t) =-a for all t<t' close enough t¢
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which is impossible. Thus we havg (t'-0) =0. But then according (17) we obtain
v, (t"-0)>0. It follows thaty, (t) >0 in some right half-neighborhood of the poifit
and then y(t)=u(t)=-1 in the same half-neighborhood. The latter mearst th
y(t) < y(t")=-afor all t >t" close enough t¢' which is also impossible.

(i) Suppose that,<t". Then0=y, (t, - 0)=(t"+ 0). The strict inequalityy, (t"-0)<0
does not hold. Indeed, in this cage(t) <0 in some right half-neighborhood of the
point t" , and theny(t) = u(t) =-1 in the some half-neighborhood, but the latter rsean
that y(t) < y(t')=-a for all t>t" close enough to", which is impossible. Therefore,
w,(t"-0)=0. Then, according to (17), we get (t'-0)>0. The latter means that
@,(t)>0 in some left half-neighborhood of the point and theny(t) = u(t) =1 in the
some half-neighborhood. The latter implies thet) < y(t)=-a for all t<t' close

enough tot', which is also impossible.
Thus, assuming thag, (t) =0 on an interval(t,.t,), we come to a contradiction. This proves

the lemma.
So, let(t,,t,) I[0,T] \M, be an arbitrary interval. Then, the functigp(t) cannot vanish

on this interval and hencg, (t) is a nonzero linear function on this interval. €equently,
@, (t)changes its sign oft,,t,) taking values +1 or -lbang-bang contrgland changing its
sign on(t,,t,) not more than once.

Now consider subintervdlr,,7,) O(t,.t,) such thatu(t)=const on (z,,7,), i. e.,u(t) =1 on
(7,,7;). Then integrating equations (2) ¢n,7,) we get

Y =utr G, (9= f+ Gt G (18)
Let us find a relation betweenand y on (z,,7,). Conditions
X=y, Y=u u=constt 0, U=:

imply
dx _y _
dy_ y uy.
Consequently,
dx= uydy,
whence
x=%f+c. (19)

Thus on the phase plan®y we have two families of parabolas. The first fanabrresponds
to the controlu(t) =1 and has the form

x=%f+C. (20)

The direction of movement along parabolas of thet family is defined by the condition: if
t -+, thenx - +wand y - +owo (cf. (18) withu=1). The second family corresponds to the

control u(t) =-1 and has the form

X:—%y2+C, (21)
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The direction of movement along parabolas of thet family is defined by the condition: if
t -+, thenx - +wandy - +oo (cf. (18) withu=-1).

So, if tO(t,,t,) O[0,T] \M,, then the poin{x, y) moves along a parabola of one of the two

families (20) or (21) )on the phase plan@®y in the corresponding direction), and then it can

switch to a parabola of another family (but not entiran once), and continue its motion along
this parabola in the corresponding direction. IratMiollows we will see that if\1, is

nonempty, then the switching on an inter{talt,) 0[0,T] \ M, is impossible

3. THE CONTACT SET WITH THE BOUNDARY OF THE STATE
CONSTRAINT

Denote by[ ¢, |(t) the jump of the functiony, at the point, i.e.,

(4, ]© =y, t+0)-w,(t-0).
The adjoint equation (12) implies

COROLLARY 3.1At any pointt0(0,T) we have

(4, J©=-[A( =0. (22)
The following lemma holds.

LEMMA 3.1 The set M, is connected.
Proof. Assume the contrary: the compact 34§ is not connected. Then there exist points
t and t", and r on [0,T], t'<7r<t", such thaty(t)=y(t')=-a and y(r)>-a. Since
[0.T]\M, is an open set (in the induced topology of therirdl [0,T]), without loss of
generality we can assume thgt) >-a for all tO(t',t"). Then, as we know, the controft)
is piecewise constant function di,t") taking values 1 or -1 with at most one switching
point, and hence(t) is a (continuous) piecewise linear function wittmest one break point.
Let 7 be a switching point of the contralt) and hencer is a break point of the function
y(t). The conditionsy=u, y(t)=y(t')=-a, y(t)>-a for all tO(t',t") imply that y(t)
increases or(t',r) and decreases ofr,t"), i.e., u(t)=1 on (t',r) and u(t)=-1 on (r,t").
Moreover, it is clear that =(t' +t")/ 2. Furthermore that the functiop,(t) is linear on the
interval (t',t") and has the following signs on this interval:
W,(t)>0 on (t'7); ¢, €)<0 on(rt').
Consequently,
¢, +0)>0, ¢, ("~ 0)<0.
The conditions
@, +0)>0, [¢,]t)=¢,t'+0)-p,t - 0)<C
Imply that ¢, (t"-0)<0, and hencey, (t)>0 in a left half-neighborhood of the point.

Consequently,y(t) =u(t) =1 in the same half-neighborhood, i.e., the functigr) is strictly
increasing in this half-neighborhood. The lattelam®that, fort <t andt close enough to',
we havey(t) < y(t) =-a, which is impossible. We come to a contradictidhis proves the

lemma.
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Since M, is a connected compact set, we get the followssgdion, y(t) .
COROLLARY 3.2The setM, is a closed interval, or a singleton, or an emgzy

If M, is an empty set, then, as we knawgt) is a bang-bang control taking valugs

with at most one switching point. In fact this cdses been considered in the preceding
section. Now let us consider the case whetgis a singleton.

4. THE CASE OF A SINGLE CONTACT WITH THE BOUNDARY OF
STATE CONSTRAINT

LEMMA 4.1 Let M, ={t'} be a singleton. Thedx=0.

Proof. Suppose thai\, is a singletor{t’} . Then, it is clear that is a minimum point of

the function y(t), and moreovery(t) decreases in a left half-neighborhood of the pdint
with the derivativey =u=-1, and y(t) increases in a right half-neighborhood of thisnpoi
with the derivativey=u=-1. It follows thaty (t)<0 in the left half-neighborhood of the

pointt’ andy,(t) <0 in the right half-neighborhood of this point. Cegsently,

@,(t'-0)<0, ¢, ¢ +0)=0.
This implies that

(o, ]®) =g, (t' +0)~y ' ~0)= 0.
From the other hand, according to Corollary 3.1, hewve [z/ly](t’)so. It follows that
[¢,](t)=0. Then, again using Corollary 3.1, we obtain tHat, |(t)=0. By the
complementary slackness condition, the measipeis concentrated on a singletdu} .
Hencedy=0. The lemma is proved.

Thus in the case, where\, is a singleton, we have thatxz=0 and hence the

nonnegativity condition and the complementary gt@sls condition are fulfilled
automatically, while the adjoint system takes threr:

Y, =0, ¢,=-y,.
Thus, the components of the extrer(m(lt), y(t), u()., (D, (t)) satisfying the state constraint

y(t)=-a, are defined by the same system of conditionsinahe case, where the state
constraint is absent. The soltions to this systesmeell-known.

5. THE CASE, WHERE THE CONTACT SET WITH THE BOUNDARY

OF STATE CONSTRAINT IS AN INTERVAL

LEMMA 5.1 Assume that\, is an interval M, =[t,,t,] O[0,T], t,<t,. Then the measure
du has no atoms, i.e., the functign has no jumps, and henge is a continuous function.
Moreover, the measuredy is absolutely continuous and has a constant demsit|t,,t,]:
du = f1dt, where s =const= 0 onlt, t,].
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Proof. Let M,=[t,t], 0<t,<t,<T. Then y(t)=a on (t,t) hence y()=0, and
thereforeu(t) =0 on (t,,t,) . In virtue of the conditioru(t) OSigny, (t) this implies that
O ) w,@t)=0 (23)

t0(to by
Taking into account the adjoint equatiew, =y, + 1 we conclude that
0 ) [ =-y, =constz C.

t(to. ty
Thus the measurdy has a constant density on the open intefyal,) . But what about
the ends of the interval?
Consider the point,. Since y(t,)=-a and yt)>-a in a left half-neighborhood of the

point t,, the linear functiony(t) decrease in a left half-neighborhood of this poignce
y(t) =u(t) =-1 in this left half-neighborhood. Then in virtue the conditionu(t) OSigny, ()
we have:y, (t)<0 in the same half-neighborhood. It follows th,a;(to—o)so. Then by

Corollary 3.1, we hav@//y](to) <0. Consequently,

‘/jy(to+O):‘/jy(to_0)+[‘//y](t0)'
This implies thaty, (t)<0 in a right half-neighborhood of the poimf. This contradicts
condition (23). Therefore](t,) =0 .

Similarly, let us show thafz](t,)=0. Assume the contrary: let[z](t,)>0. Since
y(t,)=-a and y()>-a in a right half-neighborhood of the poift, the linear functiony(t)
increases in a right half-neighborhood of this polence y(t) =u(t) =1 in this right half-
neighborhood. Then , in virtue of the conditiagt) OSigny, ), we have:y, (t)>0 in the
same half-neighborhood. It follows thet (t, +0) = 0. Now assume that the functign has a

jump at the point,: [4](t,) >0 . Then by Corollary 3.1 we haye, |(t,) <0. Consequently,
w,(t,-0) =y, (,+0)-[w,](t)>0.
This implies thaty, (t)>0 in a left half-neighborhood of the point. This contradicts
condition (23). Thereforg](t,) =0 . The lemma is proved.
Thus, in the case, where the set, is an interval[t,,t,], the character of the function
@, (t) is the following:

@, (t)<0 for tO[O,), ¢, ¢)=0 for tOty t,] ., €)> O fortd ¢, T ] (24)
Moreover,y,(t) is a continuous, piecewise linear, monotone nameising function. Hence
control u(t) has the form:

u(t)=-1 for tO(0,t,), u)= 0 for tO(t, t,) , ut)= 1 for tO(t, ;T) (25)
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ZADANIA MINIMALIZACJI CZASU
DLA DWUWYMIAROWYCH LINIOWYCH
UKEADOW STEROWANIA
Z OGRANICZENIAMI FAZOWYMI I-GO RZ EDU

Streszczenie
W artykule dokonano analizy zadania minimalizazasu ruchu punktu materialnego, wzdasi
poziomej, ktéry odbywa ¢ibez uwzgidnienia tarcia. Punkt jest kontrolowany za pomacsity
skierowanej wzdt osi poziomej. Warkz sity co do modutu nie przekracza jedenedkosé w
kierunku przeciwnym jest rowgiegraniczona. Analiza odbywaesha podstawie zasady maksimum
Pontryagina.

Autorzy:

prof. dr hab.Nikolay Osmolovskii — University of Technology and Humanities Radom;
Systems Research Institute, Polish Academy of SeeWarszawa; University of Natural
Sciences and Humanities Siedice; Moscow State Wsityeof Civil Engineering, Moscow,
Russia,

dr Marek Wajtowicz — University of Technology and Humanities Radom,

dr Szymon Janiszewski University of Technology and Humanities Radom.

3046 TTS



