PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The pathway of the water exchange over the Gdańsk-Gotland Sill of the Baltic Sea and its impact on habitat formation during the stagnation period

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water exchange between the deep basins of the Baltic Sea during stagnation periods ventilates the bottom layer. Such exchange may be local and associated with the seabed topography features. The aim of this study is to investigate the possible pathway of water exchange within the Gdańsk-Gotland Sill. A comprehensive study was conducted near the one of the local erosional trenches (depressions), comprising bathymetric survey using multibeam echosounder, water column CTD-sounding, tilt current meters mooring, and sampling of seabed deposits and macrozoobenthos. The absence of pelitic sediments even in the natural trench depressions was identified. The seabed is composed of dense clays with surface erosion signs. The presence of a current towards the Gotland Basin was recorded in the bottom layer of the erosional trench. This layer was characterized by increased salinity and dissolved oxygen concentration. The trench was also an area with macrozoobenthos richer in species composition and biomass. Moreover, indicator species of the North Sea waters were found exclusively within the erosional trench. Macrozoobenthic community structure and the age of benthic organisms confirm the existence of permanent water exchange directly from the Słupsk Furrow through the erosional trench, and indicate one of the advective pathways of water exchange between the deep Baltic Sea basins.
Czasopismo
Rocznik
Strony
163--178
Opis fizyczny
Bibliogr. 42 poz., mapka, rys., tab., wykr.
Twórcy
  • Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia
autor
  • Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia
  • Atlantic branch of the Federal State Budget Scientific Institution “Russian Federal Research Institute of Fisheries and Oceanography”, Kaliningrad, Russia
autor
  • Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia
  • Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia
  • Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia
  • Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia
autor
  • Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia
Bibliografia
  • [1] Beckholmen, M., Tirén, S. A., 2009. The geological history of the Baltic Sea, a review of the literature and investigation tools, SSM report 2009:21. Swedish Radiation Safety Authority, 118 pp.
  • [2] Bulczak, A. I., Rak, D., Schmidt, B., Beldowski, J., 2016. Observations of near-bottom currents in Bornholm basin, Slupsk furrow and Gdansk deep. Deep-Sea Res. Pt. II: Topical Studies in Oceanography 128, 96-113. https://doi.org/10.1016/j.dsr2.2015.02.021.
  • [3] Diaz, R. J., Rosenberg, R., 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioral responses of benthic macrofauna. Oceanogr. Mar. Biol.: An Annual Review 33, 245-303.
  • [4] Döös, K., Meier, H. E. M., Döscher, R., 2004. The Baltic haline conveyor belt or the overturning circulation and mixing in the Baltic. AMBIO 33 (4), 261-266. https://doi.org/10.1579/0044-7447-33.4.261.
  • [5] Dybern, B. I., Ackefors, H., Elmgren, R., 1976. Recommendations on methods for marine biological studies in the Baltic Sea. Balt. Mar. Biolog. Publ. 1, 98 pp.
  • [6] Dziaduch, D., 2007. A new occurrence of the benthic amphipod Dyopedos monacanthus (Metzger, 1875) in the southern Baltic Sea — the first record in the Słupsk Furrow. Oceanologia 49 (3), 439-445.
  • [7] Elhammer, A., Axberg, S., Kjellin, B., 1988. The marine geological map 079/470 Fårö: description and appendices, Sveriges geologiska undersökning Serie Am 2, 44 pp.
  • [8] Elken, J., 1996. Deep water overflow, circulation and vertical exchange in the Baltic Proper. Est. Mar. Inst. Rep. 6, Tallinn, 1-91.
  • [9] Elken, J., Matthäus, W., 2008. Baltic Sea oceanography, Regional Climate Studies. Assessment of climate change for the Baltic Sea Basin, Annex A, 1379-1385.
  • [10] Fischer, H., Matthäus, W., 1996. The importance of the Drogden Sill in the Sound for major Baltic inflows. J. Marine Syst. 9, 137-157. https://doi.org/10.1016/S0924-7963(96)00046-2.
  • [11] Gelumbauskaitė, L. Ž., Grigelis, A., Cato, I., Repečka, M., Kjellin, B., 1999. Bottom topography and sediment maps of the central Baltic Sea. Scale 1: 500,000. A short description. LGT Series of Marine Geological Maps No. 1, SGU Series of Geological Maps Ba No. 54.
  • [12] Gusev, A. A., Rudinskaya, L. V., 2014. Shell form, growth, and production of Astarte borealis (Schumacher, 1817) (Astartidae, Bivalvia) in the Southeastern Baltic Sea. Oceanology 54 (4), 458-464. http://doi.org/10.1134/S0001437014040043.
  • [13] Gusev, A. A., Rudinskaya, L. V., 2017. Zoobenthos fauna of the Southeastern Baltic Sea (Gdansk Basin) at different research periods. Trudy AtlantNIRO 1 (3), 33-64.
  • [14] Feistel, R., Nausch, G., Hagen, E., 2008. The absence of major inflows is intensifying the stagnation of the Baltic Sea, HELCOM news, 2/2008 Newsletter, 22-24.
  • [15] Hagen, E., Feistel, R., 2004. Observations of low-frequency current fluctuations in deep water of the Eastern Gotland Basin/Baltic Sea. J. Geophys. Res.-Oceans 109 (C3). https://doi.org/10.1029/2003JC002017.
  • [16] Hansen, A. B., Carstensen, S., Christensen, D. F., Aagaard, T., 2017. Performance of a tilt current meter in the surf zone. Proceedings of Coastal Dynamics 218, 944-954.
  • [17] HELCOM, 1988. Guidelines for the Baltic Monitoring Programme for the Third Stage: Part D. Biological Determinants. Baltic Sea Environment Proceedings 27D, 1-161.
  • [18] Janas, U., Bonsdorff, E., Warzocha, J., Radziejewska, T., 2017. Deep soft seabeds. In: Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (Eds.), Biological oceanography of the Baltic Sea. Springer, Dordrecht, 359-385.
  • [19] Lehmann, A., Hinrichsen, H. H., 2000. On the wind driven and thermohaline circulation of the Baltic Sea. Phys. Chem. Earth, Part B: Hydrology. Oceans and Atmosphere 25 (2), 183-189. https://doi.org/10.1016/S1464-1909(99)00140-9.
  • [20] Lehmann, A., Krauss, W., Hinrichsen, H. H., 2002. Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus A: Dynamic Meteorology and Oceanography Tellus A 54A, 299-316. https://doi.org/10.3402/tellusa.v54i3.12138.
  • [21] Mańkowski, W., 1961. The problem of the “domestication” of the medusa Melicertum octocostatum in the Southern Baltic, International Council for the Exploration of the Sea. C.M. Plankton Committee 30, 4 pp.
  • [22] Matthäus, W., Franck, H., 1992. Characteristics of major Baltic inflows — a statistical analysis. Cont. Shelf. Res. 12, 1375-1400. https://doi.org/10.1016/0278-4343(92)90060-W.
  • [23] Meier, H. E. M., 2007. Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar. Coast. Shelf S. 74, 610-627. https://doi.org/10.1016/j.ecss.2007.05.019.
  • [24] Meier, H. E. M., Feistel, R., Piechura, J., Arneborg, L., Burchard, H., Fiekas, V., Golenko, N., Kuzmina, N., Mohrholz, V., Nohr, C., Paka V. T., Sellschopp, J., Stips, A., Zhurbas, V., 2006. Ventilation of the Baltic Sea deep water: A brief review of present knowledge from observations and models. Oceanologia 48 (S), 133-164.
  • [25] Methodical guidelines for the collection and processing of materials in hydrobiological studies in freshwater bodies, 1983. Zoobenthos and its production, GosNIORH. Leningrad, 52 pp.
  • [26] Mohrholz, V., Naumann, M., Nausch, G., Krüger, S., Gräwe, U., 2015. Fresh oxygen for the Baltic Sea — An exceptional saline inflow after a decade of stagnation. J. Marine Syst 148, 152-166. https://doi.org/10.1016/j.jmarsys.2015.03.005.
  • [27] Mulicki, Z., 1957. Ecologia wazniejszych bezkregowcow dennych Baltyku. Reports of the Sea Fisheries Institute in Gdynia A (9) 313-377.
  • [28] Naumann, M., Gräwe, U., Mohrholz, V., Kuss, J., Siegel, H., Waniek, J. J., Schulz-Bull, D. E., 2019. Hydrographic-hydrochemical assessment of the Baltic Sea 2018. Mar. Sci. Rep. 110. http://doi.org/10.12754/msr-2019-0110.
  • [29] Naumann, M., Nausch, G., Mohrholz, V., 2016. A succession of four Major Baltic Inflows in the period 2014-2016 — an overview of propagation and environmental change. In: Proceedings of the 1st International Baltic Earth Secretariat Publication on Multiple drivers for Earth system changes in the Baltic Sea region, 9, 13-17.
  • [30] Nehring, D., Matthäus, W., Lass, H.-U., Naush, G., Nagel, K., 1995. The Baltic Sea 1994 — Consequences of the Hot Summer and Inflow Events. Deut. hydrogr. Z 47 (2), 131-144.
  • [31] Paka, V., Zhurbas, V., Golenko, M., Korzh, A., Kondrashov, A., Shchuka, S., 2019a. Innovative Closely Spaced Profiling and Current Velocity Measurements in the Southern Baltic Sea in 2016-2018 With Special Reference to the Bottom Layer. Front. Earth Sci. 7. http://doi.org/10.3389/feart.2019.00111.
  • [32] Paka, V. T., Nabatov, V. N., Kondrashov, A. A., Korzh, A. O., Podufalov, A. P., Obleukhov, S. D., Golenko, M. N., Shchuka, S. A, 2019b. On the improvement of the tilting bottom current meter. J. Oceanol. Res. 47 (2), 220-229. http://doi.org/10.29006/1564-2291.JOR-2019.47(2).13.
  • [33] Petrov, O. V. (Ed.), 2010. Atlas of Geological and Environmental Geological Maps of the Russian Area of the Baltic Sea. VSEGEI, St-Petersburg, 78 pp.
  • [34] Ponomarenko, E. P., Krechik, V. A., 2018. Benthic foraminifera distribution in the modern sediments of the Southeastern Baltic Sea with respect to North Sea water inflows. Russian J. Earth Sci. 18, art. no. ES6001. http://doi.org/10.2205/2018ES000632.
  • [35] Romanova, N. N., 1983. Methodical guidelines for the study of benthos of the southern seas of the USSR. VNIRO, Moscow, 13 pp.
  • [36] Sheremet, V. A., 2010. SeaHorse tilt current meter: inexpensive near bottom current measurements based on drag principle with coastal applications. Eos Trans. AGU 91 (26).
  • [37] Theede, H., Ponat, A., Hiroki, K., Schlieper, C., 1969. Studies on the resistance of marine bottom invertebrates to oxygen-deficiency and hydrogen sulphide. Mar. Biol. 2, 325-337.
  • [38] Uścinowicz, S., 1999. Southern Baltic area during the last deglaciation. Geol. Q. 43 (2), 137-148.
  • [39] Uścinowicz, S. (Ed.), 2011. Geochemistry of the Baltic Sea surface sediments. Polish Geological Institute — National Research Institute, Warsaw, 355 pp.
  • [40] Wieczorek, G., 2012. Spatiotemporal Scales of the Deep Circulation in the Eastern Gotland Basin / Baltic Sea. Mar. Sci. Rep. 88, 146 pp.
  • [41] WoRMS Editorial Board, 2020. World Register of Marine Species. http://www.marinespecies.org/.
  • [42] Zhurbas, V., Stipa, T., Mälkki, P., Paka, V., Golenko, N., Hense, I., Sklyarov, V., 2004. Generation of subsurface cyclonic eddies in the southeast Baltic Sea: Observations and numerical experiments. J. Geophys. Res.-Oceans 109, C5. http://doi.org/10.1029/2003JC002074.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-615f5a8d-f1b3-44b8-baa2-db3d8254e747
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.