PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental verification of the applicability of the AQURE IOERT accelerator for FLASH radiotherapy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: FLASH radiotherapy is based on delivering an ultra-high dose of ionizing radiation in a very short time, which allows for the enhanced protection of healthy tissues and the effective destruction of tumour tissues. The paper presents experimental verification of the applicability of the intraoperative electron radiotherapy (IOERT) accelerator to obtain electron beams with ultra-high dose rates. The results of electron beam dosimetric measurements were compared with simulations to verify the parameters of the electron beams obtained in FLASH mode. Material and Methods: The IOERT AQURE accelerator is designed and manufactured at the National Centre for Nuclear Research. The device provides electron beams with energies in the energy range of 4-12 MeV. The accelerator was recently upgraded to deliver ultra-high-dose rates (FLASH). The emitted electron beams were verified by percentage dose depth (PDD) and beam profile measurements using Gafchromic EBT-XD films. The measurement results were compared with Monte Carlo simulations performed using the Geant4 application. Results: Conventional and FLASH electron beam parameters, i.e. depths of doses, most probable beam energies at the phantom surface, and average beam energies at the phantom surface were determined experimentally for the upgraded IOERT accelerator for 6 MeV and 9 MeV. The results of dose measurements showed that the accelerator can provide electron beams with homogeneous and symmetrical fields with dose rates up to 300 Gy/s ± 6 Gy/s, for an electron beam at a nominal energy of 6 MeV, and up to 440 Gy/s ± 9 Gy/s at a nominal energy of 9 MeV. A comparison of measured and simulated PDDs and dose profiles for FLASH beams showed good agreement (no worse than 90%) under the gamma index of 3%/3 mm. Conclusions: The results obtained confirm that the upgraded intraoperative accelerator can be used in planned, pre-clinical radiobiology experiments in both conventional and ultra-high dose rate (FLASH-RT) modes.
Rocznik
Strony
62--72
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • National Centre For Nuclear Research, Andrzeja Sołtana 7, 05-400, Otwock, Poland
  • National Centre For Nuclear Research, Andrzeja Sołtana 7, 05-400, Otwock, Poland
  • National Centre For Nuclear Research, Andrzeja Sołtana 7, 05-400, Otwock, Poland
  • National Centre For Nuclear Research, Andrzeja Sołtana 7, 05-400, Otwock, Poland
  • Department of Electroradiology, Poznan University of Medical Sciences, Fredry 10, 61-701, Poznan, Poland
  • Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15, 61-866, Poznan, Poland
  • Breast Surgical Oncology Department, Greater Poland Cancer Centre, Garbary 15, 61-866, Poznan, Poland
  • National Centre For Nuclear Research, Andrzeja Sołtana 7, 05-400, Otwock, Poland
  • National Centre For Nuclear Research, Andrzeja Sołtana 7, 05-400, Otwock, Poland
Bibliografia
  • 1. Berry RJ, Hall EJ, Forster DW, Storr TH, Goodman MJ. Survival of mammalian cells exposed to X rays at ultra-high dose-rates. Br J Radiol. 1969;42(494):102-107. https://doi.org/10.1259/0007-1285-42-494-102
  • 2. Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014;6(245). https://doi.org/10.1126/scitranslmed.3008973
  • 3. Calvo FA, Serrano J, Cambeiro M, et al. Intra-Operative Electron Radiation Therapy: An Update of the Evidence Collected in 40 Years to Search for Models for Electron-FLASH Studies. Cancers. 2022;14(15):3693. https://doi.org/10.3390/cancers14153693
  • 4. Bourhis J, Sozzi WJ, Jorge PG, et al. Treatment of a first patient with FLASH-radiotherapy. Radiother Oncol. 2019;139:18-22. https://doi.org/10.1016/j.radonc.2019.06.019
  • 5. Romano F, Bailat C, Jorge PG, Lerch MLF, Darafsheh A. Ultra‐high dose rate dosimetry: Challenges and opportunities for FLASH radiation therapy. Med Phys. 2022;49(7):4912-4932. https://doi.org/10.1002/mp.15649
  • 6. Lenartowicz-Gasik A, Misiarz A, Markopolski V, et al. Verification of real-time dosimetry of ultra-high dose rate beams at AQURE FLASH RT on the sample surface. Polish Journal of Medical Physics and Engineering. 2024;30(4). https://doi.org/10.2478/pjmpe-2024-0038
  • 7. Kruszyna-Mochalska M, Bijok M, Pawałowski B, et al. Zalecenia Polskiego Towarzystwa Fizyki Medycznej dotyczące kontroli jakości w radioterapii śródoperacyjnej promieniowaniem elektronowym (IOERT) za pomocą mobilnych akceleratorów. Inż Fiz Med. 8(1):7-25.
  • 8. Misiarz A, Lenartowicz A, Adrich P, et al. Design and performance validation of a novel 3d printed thin-walled and transparent electron beam applicators for intraoperative radiation therapy with beam energy up to 12 MeV. Rep Pract Oncol Radiother. 2024;29(3):329-339. https://doi.org/10.5603/rpor.101092
  • 9. Teledyne e2v. Magnetrons & Accessories. 2024. https://www.teledyne-e2v.com/en/solutions/rf-power/rf-devices/magnetrons/,", 2023. [Online].
  • 10. Ashraf MR, Bruza P, Krishnaswamy V, Gladstone DJ, Pogue BW. Technical Note: Time‐gating to medical linear accelerator pulses: Stray radiation detector. Med Phys. 2019;46(2):1044-1048. https://doi.org/10.1002/mp.13311
  • 11. Adrich P. Technical Note: Monte Carlo study on the reduction in x‐ray contamination of therapeutic electron beams for Intraoperative Radiation Therapy by means of improvements in the design of scattering foils. Med Phys. 2019;46(8):3378-3384. https://doi.org/10.1002/mp.13647
  • 12 Ryczkowski A, Pawałowski B, Kruszyna-Mochalska M, et al. Commissioning, dosimetric characterisation and machine performance assessment of the AQURE mobile accelerator for intraoperative radiotherapy. Polish Journal of Medical Physics and Engineering. 2024;30(3):177-181. https://doi.org/10.2478/pjmpe-2024-0021
  • 13. Dróżdż A, Waluś M, Zieliński M, et al. Verification of electron beam parameters in an intraoperative linear accelerator using dosimetric and radiobiological response methods. Rep Pract Oncol Radiother. 2021;26(6):1029-1034. https://doi.org/10.5603/RPOR.a2021.0128
  • 14. van der Geer SB, de Loos MJ. Applications of the General Particle Tracer code. In: Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167). Vol 2. IEEE; 1998:2577-2579. https://doi.org/10.1109/PAC.1997.751279
  • 15. de Loos MJ, van der Geer SB. GENERAL PARTICLE TRACER: A NEW 3D CODE FOR ACCELERATOR AND BEAM LINE DESIGN. In: ; 1996:pp.e-proc. 1241.
  • 16. Elbashir FEM, Ksouri W, Eisa MH, et al. Comparison of Dosimetry Protocols for Electron Beam Radiotherapy Calibrations and Measurement Uncertainties. Life. 2021;12(1):31. https://doi.org/10.3390/life12010031
  • 17. IEC 60976 - Medical Electrical Equipment — Medical Electron Accelerators — Functional Performance Characteristics. International Electrotechnical Commission; 2007.
  • 18. Ashraf MR, Rahman M, Zhang R, et al. Dosimetry for FLASH Radiotherapy: A Review of Tools and the Role of Radioluminescence and Cherenkov Emission. Front Phys. 2020;8:328. https://doi.org/10.3389/fphy.2020.00328
  • 19. Petersson K, Jaccard M, Germond J, et al. High dose‐per‐pulse electron beam dosimetry — A model to correct for the ion recombination in the Advanced Markus ionization chamber. Med Phys. 2017;44(3):1157-1167. https://doi.org/10.1002/mp.12111
  • 20. Levy K, Natarajan S, Wang J, et al. Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice. Sci Rep. 2020;10(1):21600. https://doi.org/10.1038/s41598-020-78017-7
  • 21. Rohrer Bley C, Wolf F, Gonçalves Jorge P, et al. Dose- and Volume-Limiting Late Toxicity of FLASH Radiotherapy in Cats with Squamous Cell Carcinoma of the Nasal Planum and in Mini Pigs. Clin Cancer Res. 2022;28(17):3814-3823. https://doi.org/10.1158/1078-0432.CCR-22-0262
  • 22. Biological effects in normal cells exposed to FLASH dose rate protons - PubMed. Accessed April 29, 2024. https://pubmed.ncbi.nlm.nih.gov/30850209/
  • 23. Karsch L, Beyreuther E, Burris-Mog T, et al. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors. Med Phys. 2012;39(5):2447-2455. https://doi.org/10.1118/1.3700400
  • 24. International Atomic Energy Agency. Absorbed Dose Determination in Photon and Electron Beams - An International Code of Practice. Technical Reports Series No. 277; 1987.
  • 25. International Atomic Energy Agency. The Use of Plane Parallel Ionization Chambers in High Energy Electron and Photon Beams: An International Code of Practice for Dosimetry. Technical Reports Series No. 381. International Atomic Energy Agency; 1997.
  • 26. Atiq M, Atiq A, Iqbal K, Shamsi QA, Andleeb F, Buzdar SA. Interpretation of Gamma Index for Quality Assurance of Simultaneously Integrated Boost (SIB) IMRT Plans for Head and Neck Carcinoma. Pol J Med Phys Eng. 2017;23(4):93-97. https://doi.org/10.1515/pjmpe-2017-0016
  • 27. Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25(5):656-661. https://doi.org/10.1118/1.598248
  • 28. IntraOp. Product Datasheet Mobetron. IntraOp Mobetron HDR Product Datasheet. 2024. https://ezmpid78ed4.exactdn.com/wp-content/uploads/IntraOp_Mobetron_Data_Sheet-QN.r01.4-1.pdf
  • 29. Meyer J, Nyflot MJ, Smith WP, et al. Electron beam energy QA — a note on measurement tolerances. J Appl Clin Med Phys. 2016;17(2):249-257. https://doi.org/10.1120/jacmp.v17i2.6049
  • 30. Rosenberg I. Radiation Oncology Physics: A Handbook for Teachers and Students. Br J Cancer. 2008;98(5):1020-1020. https://doi.org/10.1038/sj.bjc.6604224
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-615dbf2a-d141-4cbc-b74b-f919d07da32a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.