PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Absolute instability of double annular jets: local stability analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the local linear stability analysis of the double annular jets. The calculations show that the first absolutely unstable helical mode can be generated in the non-swirling annular jets by the back-flow in the central recirculation zone or sufficiently strong back-flow in the external recirculation zone. The influence of the back-flow magnitude on the frequency, growth rate and eigenfunctions of the first helical mode is discussed. The calculations are completed with an analysis of the influence of the swirl intensity in the internal and external jets on the characteristics of the first absolutely unstable helical mode.
Słowa kluczowe
Rocznik
Strony
267--300
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • Department of Thermal Machinery, Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Armii Krajowej 21, 42-201 Czestochowa, Poland,
autor
  • Department of Thermal Machinery, Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Armii Krajowej 21, 42-201 Czestochowa, Poland,
Bibliografia
  • 1. O. Lucca-Negro, T. O’Doherty, Vortex breakdown: a review, Progress in Energy and Combustion Science, 27, 431–481, 2001.
  • 2. N. Syred, A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems, Progress in Energy and Combustion Science, 32, 93–161, 2006.
  • 3. K. Oberleithner, C.O. Paschereit, R. Seele, I. Wygnanski, The formation of turbulent vortex breakdown intermittency, criticality, and global instability, AIAA Journal, 50, 7, 1437–1485, 2012.
  • 4. T.B. Benjamin, Theory of the vortex breakdown phenomenon, Journal of Fluid Mechanics, 14, 593–629, 1962.
  • 5. T.B. Benajmin, Some developments in the theory of vortex breakdown, Journal of Fluid Mechanics, 28, 1, 65–84, 1967.
  • 6. H. Bossel, Vortex breakdown flowfield, Physics of Fluids, 12, 3, 498–508, 1969.
  • 7. E. Krause, A contribution to the problem of vortex breakdown, Computers and Fluids, 13, 3, 375–381, 1985.
  • 8. E. Krause, Numerical prediction of vortex breakdown, Fluid Dynamics Research, 3, 3–4, 263–267, 1988.
  • 9. M. Escudier, Vortex breakdown: observations an explanations, Progress in Aerospace Science, 25, 2, 189–229, 1988.
  • 10. L.N. Howard, A.S. Gupta, On the hydrodynamic and hydromagnetic stability of swirling flows, Journal of Fluid Mechanics, 14, 463–76, 1962.
  • 11. M. Lessen, P.J. Singh, F. Paillet, The stability of a trailing line vortex. Part 1: inviscid theory, Journal of Fluid Mechanics, 63, 4, 753–763, 1974.
  • 12. S. Leibovich, K. Stewardson, A sufficient condition for the instability of columnar vortices, Journal of Fluid Mechanics, 126, 335–356, 1983.
  • 13. A.Q. Quadri, D. Mistry, M.P. Juniper, Structural sensitivity of spiral vortex breakdown, Journal of Fluid Mechanics, 720, 558–581, 2013.
  • 14. M. Garcia-Villalba, J. Fröhlich, W. Rodi, Identification and analysis of coherent structures in the near field of turbulent unconfined annular swirling jets using large eddy simulation, Physics of Fluids, 18, 055103, 2006.
  • 15. M. Garcia-Villalba, J. Fröhlich, LES study of a free annular swirlng jet-Dependence of coherent structures on a pilot jet and the level of swirl, International Journal of Heat and Fluid Flow, 27, 911–923, 2006.
  • 16. M. Vaniershot, J.S. Müller, M. Sieber, M. Percin, B.W. van Oudhesden, K. Oberleithner, Single- and double-helix vortex breakdown as two dominant global modes in turbulent swirling jet flow, Journal of Fluid Mechanics, 883, A31, 1–30, 2020.
  • 17. M. Juniper, Absolute and Convective Instability in Gas Turbine Fuel Injectors, [in:] ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, 2, 189–198, 2012.
  • 18. S. Terhaar, K. Oberleithner, C.O. Paschereit, Key parameters governing the precessing vortex core in reacting flows: an experimental and analytical study, Proceedings of the Combustion Institute, 35, 3347–3354, 2015.
  • 19. K. Oberleithner, M. Stöhr, S.H. Im, C.O. Paschereit, Linear stability analysis of turbulent swirling combustor flows: impact of flow field and flame shapes on the PVC, [in:] 7th European Combustion Meeting, 2015.
  • 20. A. Michalke, Absolute inviscid instability of a ring jet with back-flow and swirl, European Journal of Mechanics-B/Fluids, 18, 1, 3–12, 1999.
  • 21. R.J. Briggs, Electron-Stream Interaction with Plasmas, Research Monograph No. 29, The M.I.T. Press, Cambridge, 1964.
  • 22. A. Bers, Linear Waves and Instabilities, Physique des Plasmas, Gordon and Breach, London, 1975.
  • 23. P.J. Schmid, D.S. Henningson, Stability and Transition in Shear Flows, Springer, New York, 2001.
  • 24. A. Boguslawski, K. Wawrzak, Absolute instability of an annular jet: local stability analysis, Meccanica, An International Journal of Theoretical and Applied Mechanics, 55, 2179–2198, 2020.
  • 25. K. Wawrzak, A. Boguslawski, A. Tyliszczak, M. Saczek, LES study of global instability in annular jets, International Journal of Heat and Fluid Flow, 19, 18460–12, 2019.
  • 26. T. Broeckhoven, M. Brouns, J. Vanherzeele, S. Vanlanduit, Ch. Lacor, PIV measurements of double annular jet for validation of numerical simulations, [in:] 13th International Symposium on Applications of Laser Techniques to Fluid Mechnaics, 2006.
  • 27. T. Frania, S. Geerts, Ch. Hirsch, Measurements of the 3D turbulent flow field of a confined double annular jet, [in:] AIAA paper No. 2005-5154, AIAA 4th Theoretical Fluid Mechanics Conference, Toronto, Ontario, 2005.
  • 28. S. Geerts, Ch. Hirsch, T. Broeckhoven, Ch. Lacor, Validation of CFD and turbulence models for confined double annular jets, [in:] AIAA paper No. 2005-5317, AIAA 4th Theoretical Fluid Mechanics Conference, Toronto, Ontario, 2005.
  • 29. J. Bijak, A. Boguslawski, Absolute instability of a double ring jet-numerical study, Journal of Theoretical and Applied Mechanics, 45, 3, 479–488, 2007.
  • 30. S. Jendoubi, P. Strykowski, Absolute and convective instability of axisymmetric jets with external flow, Physics of Fluids, 6, 3000, 1994.
  • 31. A. Boguslawski, A. Tyliszczak, K. Wawrzak, Large eddy simulation predictions of absolutely unstable round hot jet, Physics of Fluids, 28, 025108, 2016.
  • 32. E. Fehlberg, Low-order classical Runge-Kutta formulas with step size control and their application to some heat transfer problems, Technical Report 315, NASA, 1969.
  • 33. A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Springer, New York, 2007.
  • 34. P.A. Monkewitz, K.D. Sohn, Absolute instability in hot jets, AIAA Journal, 26, 8, 911–916, 1988.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-615d7ed6-53a1-48e0-a6e1-0b3c3dc102a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.