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Absolute instability of double annular jets:
local stability analysis
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The paper presents the local linear stability analysis of the double annular
jets. The calculations show that the first absolutely unstable helical mode can be
generated in the non-swirling annular jets by the back-flow in the central recirculation
zone or sufficiently strong back-flow in the external recirculation zone. The influence
of the back-flow magnitude on the frequency, growth rate and eigenfunctions of the
first helical mode is discussed. The calculations are completed with an analysis of the
influence of the swirl intensity in the internal and external jets on the characteristics
of the first absolutely unstable helical mode.
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1. Introduction

Annular nozzles are used in many technical applications as in gas
turbines and aeroengines to deliver fuel and oxidiser in a combustion chamber.
An annular jet issuing from such a nozzle is seemingly a simple flow type, al-
though the dynamics of large scale structures appearing in this flow has not been
fully understood till now despite an enormous number of theoretical, experimen-
tal and numerical studies in this field. Large scale structures in the transitional
region of the annular jet could enhance or deteriorate mixing intensity in com-
bustors, hence improved understanding of the flow dynamics could be helpful in
the development of new and more efficient combustion technologies. As observed
experimentally in various combustors the flow is dominated by spiral large scale
structures. These structures stem from a phenomenon called the vortex break-
down (VB) [1]. Although the VB has already been studied for more than six
decades, in all possible ways: theoretically, experimentally and numerically, its
origin has not been fully recognised so far. The VB is a highly time-dependent
phenomenon and the spiral-shaped structures start to precess about the jet axis
thus forming the so-called precessing vortex core (PVC) [2]. As pointed out in [3]
the theories proposed for the VB could be categorised into the following concepts:
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1. The phenomenon is associated with the concept of critical state or, more
generally, with wave phenomena [4–6].

2. The phenomenon is analogous to boundary layer separation or flow stag-
nation [7, 8].

3. The phenomenon is a consequence of the hydrodynamic instability [9–12].

There are many more recent advanced approaches to the VB especially in
the case of swirling jets [13] and swirling annular jets [14, 15] indicating that the
Kelvin-Helmholtz instability could be the major source of spiral structures in
these flow types. The VB has been observed in many flow types like circular jets
and annular jets with a swirl and it seems that the origin of this phenomenon has
not been fully understood so far. As stressed by Vaniershot et al. [16] due to
the occurrence of several types of breakdown and the often contradictory results
because of high sensitivity to boundary conditions, there is still no consensus
about the origin of the VB.

Recently one can find many opinions in the literature [17–19] based on ex-
perimental results and stability calculations indicating that the VB is actually
the manifestation of the self-excited global hydrodynamic instability triggered
by the absolutely unstable helical modes.

Michalke [20] using spatio-temporal stability theory and Briggs/Bers cri-
teria [21–23] showed a presence of the first azimuthal absolutely unstable mode
in both non-swirling and swirling annular jets. Parametric studies of annular jet
stability were performed by Boguslawski and Wawrzak [24]. They showed
that the steepness of the inner shear layer promoted absolute instability and had
a weak influence on the absolute mode frequency. On the contrary, the steepness
of the outer shear layer did not influence the absolute growth rate while it led
to a certain decrease in the oscillations frequency. The calculations performed
confirmed also conclusions derived by Michalke [20] that a stronger back-flow
promoted the absolute growth rate and that a limited amount of swirl promoted
the first helical absolute mode.

Qualitative results stemming from the parametric studies of Boguslawski
and Wawrzak [24] were utilised by Wawrzak et al. [25] in their Large Eddy
Simulations (LES) studies of a non-swirling annular jet. They showed that helical
structures could be triggered by varying the steepness of the inner shear layer
confirming the results of the stability theory.

A more common configuration used in gas turbines and aeroengine combus-
tors consists of two coaxial annular jets. A mean velocity field of such a flow type
was studied experimentally [26, 27] and numerically [28]. However, the dynamics
of large scale structures in the double annular jets seems to be little known. Such
a fact is surprising taking into account common industrial applications of this
flow type. Preliminary stability calculations of the double annular non-swirling
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jets were performed by Bijak and Boguslawski [29], however, limited to a nar-
row range of the governing parameters. It is known from the measurements that
the flow field is characterised by a central recirculation zone (CRZ) behind the
central bluff body and a concentric external recirculation zone (ERZ) formed
by the external annular jet. As it is known from previous studies, based on the
stability theory [20, 24] and LES predictions [25], the back-flow in the CRZ is
favourable for triggering the absolutely unstable helical modes. Hence, it is inter-
esting whether the jet stability can be also controlled by a back-flow in the ERZ,
in double annular jets. The present study is aimed at a stability analysis of the
double annular jets to understand what is the impact of the external annular
jet on the first azimuthal absolutely unstable mode and to establish favourable
conditions for such instability in non-swirling and swirling flows.

2. Base flow

A schematic view of the double annular jet is shown in Fig. 1. The internal
annular jet is characterised by the outer and inner diameters denoted by Dint

o

and Dint
i , respectively. Behind the bluff body, the CRZ is formed that is sur-

rounded by the inner shear layer. The outer one is formed between the jet and
the ERZ formed behind the annular bluff body between internal and external
nozzles. The external annular jet is characterised by the outer and inner diame-
ters denoted by Dext

o and Dext
i , respectively. Sample axial and tangential velocity

profiles in the cross-section denoted by the dashed line are also shown. All the
velocities are normalised by the maximum axial velocity in the internal jet and
all the lengths by the radius where this maximum appears. In the case of the
local stability analysis, it is assumed that the flow is parallel and the velocity
field extends infinitely along the jet axis. Thus the base flow of the annular jet
is modelled by an axial velocity U(r) and a swirl with the tangential velocity
component W (r). In a parallel flow approximation, the radial velocity compo-
nent V (r) is neglected. The axial velocity component U(r) represents a double
annular jet with a possible reversed flow on the jet axis with U(r = 0) = U0 < 0
and a back-flow in the ERZ with U01 < 0.

A flexible method to describe axial and tangential velocity profiles in a vicinity
of the annular nozzle exit was proposed by Boguslawski and Wawrzak [24].
To approximate the axial velocity profile the hyperbolic tangent function was
applied. This function was used to describe the shear layer velocity profile in the
case of counter-current jets by Jendoubi and Strykowski [30] and in the case
of a hot jet by Boguslawski et al. [31]. It was shown in the latter work that the
hyperbolic tangent function reproduced well velocity profiles resulting from LES.
In this section, the analysis is extended to the problem of the double annular jet
with a swirl. The laminar base flow characterising such a flow should be flexible
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Fig. 1. Schematic view of the double annular jet indicating central and external
recirculation zones.

allowing independent control of the velocity profiles of the internal and external
jets. The only constraint is zero radial velocity gradient at the jet axis and in
the middle of the ERZ. Other parameters like velocity gradients in shear layers,
back-flow velocities in recirculation zones, maximum velocities and their location
in both jets should be defined independently. The same refers to the tangential
velocity profiles. In this case, the only constraint was the continuous first radial
derivative. As it was shown in [24] for a single annular jet the axial velocity profile
built from hyperbolic tangent functions satisfies all the requirements. Hence,
a similar approach to approximate the laminar base flow for the double annular
jet with a swirl is discussed in the paper. The flow is modelled for internal and
external jets by independent functions. The internal annular jet extends from
the axis to the radius R01 in the centre of the ERZ and the external one from
R01 to infinity. Hence, the axial velocity profile is defined as

(2.1) U(r) =

{
U int(r) for 0 < r ≤ R01,

U ext(r) for R01 < r <∞.
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Velocity profiles for the internal and external jets are described by the fol-
lowing functions:

(2.2) U int(r) = U intin tanh[bintin (r −Rintin )]− U intout tanh[bintout(r −Rintout)]

+
bintin U

int
in

cosh2(−bintin Rintin )

[1− tanh(b0,intin r)]

b0,intin

− bintoutU
int
out

cosh2(−bintoutRintout)
[1− tanh(b0,intout r)]

b0,intout

− bintin U
int
in

cosh2[bintin (R01 −Rintin )]

{1− tanh[b0,intin (−r +R01)]}
b0,intin

+
bintoutU

int
out

cosh2[bintout(R01 −Rintout)]
{1− tanh[b0,intout (−r +R01)]}

b0,intout

− U intin + U intout + U int∞

and

U ext(r) = U extin tanh[bextin (r −Rextin )]− U extout tanh[bextout(r −Rextout)](2.3)

+
bextin U

ext
in

cosh2[bextin (R01 −Rextin )]

{1− tanh[b0,extin (r −R01)]}
b0,extin

− bextoutU
ext
out

cosh2[bextout(R01 −Rextout)]

{1− tanh[b0,extout (r −R01)]}
b0,extout

− U extin + U extout ,

the subscripts “in” and “out” in Eqs. (2.2) and (2.3) refer to inner and outer shear
layers, while superscripts “int” and “ext” stand for the internal and external jets.
The parameters bintin , bintout and bextin , bextout allow the control of the velocity gradients
in inner and outer shear layers of both internal and external jets. The details of
procedures to establish the parameters of the axial velocity profiles are described
in Appendix A.

To complete the description of the laminar base flow a tangential velocity
profile for a double annular jet must be defined. It is proposed as a superposition
of two Lamb-Oseen generalised vortices, used already in [24], as:

(2.4) W (r) = W int(r) +W ext(r),

where

W int(r) =
Aint(RintWmax

)N
int
W −1

rN
int
W −1

{
1− exp(−bintrN int

W )

1− exp[−bint(RintWmax
)N

int
W ]

}
,(2.5)

W ext(r) =
Aext(RextWmax

)N
ext
W −1

rN
ext
W −1

{
1− exp(−bextrNext

W )

1− exp[−bext(RextWmax
)N

ext
W ]

}
,(2.6)
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where Aint = W int
max/U

int
max and Aext = W ext

max/U
int
max are swirl numbers in the

internal and external jets, respectively. The symbols RintWmax
and RextWmax

denote
the radii for which azimuthal velocity attains its maximum in the internal and
external jets, respectively. The exponents N int

W and N ext
W control the decay rate

of the velocity at the vortex peripheries, for internal and external vortices, while
in the vortex core the velocity is still close to the solid body rotation.

The parameters bint and bext are found from the conditions that the functions
(2.5) and (2.6) have the maximum at the radii r = RintWmax

and r = RextWmax
,

respectively.

3. Stability equations and solution method

The small disturbance of flow parameters is assumed as a wave travelling
along axial x and azimuthal ϕ directions with the amplitude varying along with
the radial direction r in the following form:

(3.1) (u′, v′, w′, p′) = [û(r), v̂(r), ŵ(r), p̂(r)] exp [i(αx+mϕ− ωt)].

Here u′, v′, w′ and p′ are axial, radial, azimuthal velocity and pressure distur-
bances, respectively, α = αr + iαi is the complex wavenumber, ω = ωr + iωi
is the complex frequency and m is the azimuthal real wavenumber. Such dis-
turbances are introduced into the continuity equation and Euler equations in
cylindrical coordinates and linearised around the given base flow. As shown by
Michalke [20], after eliminating the û and ŵ velocities, the stability equations
can be written as

rσ
dp̂

dr
= i[2WZ − rσ2]v̂ − 2mW

r
p̂,(3.2)

σ

r

d(rv̂)

dr
= i

[
α2 +

m2

r2

]
p̂+

[
α
dU

dr
+m

Z

r

]
v̂,(3.3)

where

σ(r) = αU − ω +
W

r
m,(3.4)

Z(r) =
dW

dr
+
W

r
.(3.5)

To solve the system of the stability equations (3.2) and (3.3) the boundary con-
ditions must be formulated on the jet axis r = 0 and for r →∞ using features of
the axial and azimuthal velocity profiles of the base flow. The boundary condi-
tions require that v̂(r) and p̂(r) are bounded on the jet axis and both quantities
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vanish at the jet periphery. The asymptotic behaviour for r →∞ can be obtained
if one takes into account that

(3.6) lim
r→∞

U,
dU

dr
, Z = 0, lim

r→∞

W

r
=

Aint∞

rN
int
W

+
Aext∞

rN
ext
W

,

where

Aint∞ =
Aint(RintWmax

)N
int
W −1

1− exp[−bint(RintWmax
)N

int
W −1]

, Aext∞
Aext(RextWmax

)N
ext
W −1

1− exp[−bext(RextWmax
)N

ext
W −1]

.

Introducing the notation:

(3.7) σ∞ = lim
r→∞

σ(r) = m

(
Aint∞

rN
int
W

+
Aext∞

rN
ext
W

)
− ω,

the stability equations (3.2) and (3.3) for r →∞ take the following forms:

rσ∞
dp̂

dr
= −irσ2

∞v̂ − 2m

(
Aint∞

rN
int
W

+
Aext∞

rN
ext
W

)
p̂,(3.8)

σ∞
r

d(rv̂)

dr
= i

[
α2 +

(
m

r

)2]
p̂.(3.9)

Introducing the notation Φ = rv̂ Eq. (3.9) reads as

(3.10)
d

dr

[
r

m2 + (αr)2

dΦ

dr

]
− Φ

r
= 0

with the decaying solution

(3.11) Φ = rK ′m(αr),

whereKm is the modified Bessel function of the second kind and orderm. Hence,
v̂ velocity at the limit r →∞ is

(3.12) v̂(r) = K ′m(αr).

As shown by Michalke [20], neglecting the second term on r.h.s of Eq. (3.8), for
r →∞, and integrating leads to the asymptotic limit for a pressure perturbation
at the jet periphery

(3.13) p̂(r) = − i
α
σ∞Km(αr) = − i

α

[
m

(
Aint∞

rN
int
W

+
Aext∞

rN
int
W

)
− ω

]
Km(αr).
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The boundary conditions on the jet axis, despite a different base flow used in
the current analysis, are the same as shown by Michalke [20]. Pressure and
velocity perturbations at the jet axis are expressed as

p̂(r) = Im(βr),(3.14)

v̂(r) =
iα

σ0

√
1− µ2

[
I ′m(βr) +

mµ

βr
Im(βr)

]
,(3.15)

where Im is the modified Bessel function of the first kind and

(3.16) Ω = Aint∞ bint +Aext∞ bext, σ0 = αU0 − ω, µ =
2Ω

σ0
, β2 = α2(1− µ2).

The eigenvalue problem now is solved numerically by integrating stability equa-
tions (3.2) and (3.3) by means of the Runge–Kutta–Fehlberg procedure [32] of
the 4th order starting with r = 10−6 and boundary conditions (3.14) and (3.15)
up till r = 1 yielding p̂L(1) and v̂L(1), and from a radius r∞, large enough to
apply the asymptotic solutions (3.12) and (3.13), back to r = 1 yielding p̂R(1)
and v̂R(1). The eigenvalue condition then follows from the matching of these
solutions at r = 1, requiring:

(3.17) G(ω, α) =
p̂L
v̂L
− p̂R
v̂R

= 0.

This condition leads, for a given ω, to a relation α(ω), or, for a given α to ω(α).
The eigenvalue problems can be solved by Newton’s method [33] as

ω(n+1) = ω(n) − G(ω(n), α)

∂G/∂ω|ω(n)

,(3.18)

α(n+1) = α(n) − G(ω, α(n))

∂G/∂α|α(n)

,(3.19)

where
∂G

∂ω
=

1

v̂L

(
∂p̂

∂ω

)
L

− 1

v̂R

(
∂p̂

∂ω

)
R

− p̂L
v̂2
L

(
∂v̂

∂ω

)
L

+
p̂R
v̂2
R

(
∂v̂

∂ω

)
R

,(3.20)

∂G

∂α
=

1

v̂L

(
∂p̂

∂α

)
L

− 1

v̂R

(
∂p̂

∂α

)
R

− p̂L
v̂2
L

(
∂v̂

∂α

)
L

+
p̂R
v̂2
R

(
∂v̂

∂α

)
R

.(3.21)

In order to use Newton’s method to solve an eigenvalue problem one needs
information on the derivatives of pressure and velocity perturbations with respect
to the complex wavenumber α or the complex frequency ω, respectively. This
information can be obtained solving the differential equations obtained from the
stability equations (3.2), (3.3) and the boundary conditions (3.12), (3.13), (3.14)
and (3.15) differentiated with respect to the wavenumber α or the frequency ω,
respectively.
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4. Results

4.1. Non-swirling jets

Velocity profiles analysed within the present work for double annular jets were
based on the velocity profiles of a single annular jet analysed in [24]. The stability
calculations were performed for three back-flow velocities in the CRZ, namely
U0 = 0,−0.3,−0.5. In the case U0 = 0 the jet without a swirl or an external
annular jet is not in the absolutely unstable regime while two other cases are
absolutely unstable [20]. The parameters of axial velocity radial gradients in
the inner and outer shear layers of the internal jet were kept constant bintin =
bintout = 1.5. The same values were used for the external jet bextin = bextout = 1.5.
The parameters b0,intin = b0,intout = b0,extin = b0,extout = 4.0 were kept also fixed in all
the test cases analysed. The centre of the ERZ was chosen as R01 = 2 and the
radius of the maximum velocity in the external jet RextUmax

= 3.0. As the main
goal of the present work was to analyse the influence of the external annular jet
on the flow stability only the parameters changing the ERZ were changed. The
parameters Rintin = 0.75 and Rextout = 3.25 were applied for the test cases with
the back-flow velocities in the CRZ U0 = 0 and U0 = −0.3 while in the case
of U0 = −0.5 the parameter was slightly lower Rintin = 0.70 as for this back-
flow for Rintin = 0.75 the convergent solution for U intin was not found. All other
parameters controlling the ERZ, imposed and calculated, as shown before, will be
presented for each test case. Following the work of Michalke [20] the stability
analysis of the first azimuthal mode (m = 1) was performed. This mode seems
to be of primary importance in practical applications since in gas turbines and
aeroengines this type of instability could trigger helical structures responsible for
the enhancement of mixing of fuel and oxidiser streams. The second helical mode
(m = 2) was studied by Boguslawski and Wawrzak [24] and they showed
that this mode, which could trigger double helical structures, was present only
for strongly swirling flows.

Figure 2 shows iso-contours of the imaginary part of the complex frequency
ω0,i around a saddle point dω/dα = 0 in complex wavenumbers plane where the
pinching condition is satisfied. Having known the ω-maps in α-planes around the
saddle point, the precise pairs ω0 and α0, for which dω/dα = 0, were found using
an iterative procedure presented by Monkewitz and Sohn [34]. The results
shown in Fig. 2 correspond to the test case BF int0 BF ext02 (BF int and BF ext

stand for the back-flow velocity magnitudes in the CRZ and ERZ, respectively),
defined in Table B.1, for which the first helical mode is absolutely unstable.
Numerical values of the complex wavenumbers α0 and frequencies ω0 for all the
test cases considered in the paper are shown in Appendix C.

The velocity profiles for the test cases with U0 = 0 are shown in Fig. 3a,
with the list of parameters of the axial velocity profiles gathered in Table B.1.
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Fig. 3. Influence of the back-flow velocity in the ERZ, U0 = 0: (a) axial velocity profiles,
(b) complex frequency of the first absolute helical mode.

Figure 3b shows the complex frequency ω0 as a function of the back-flow velocity
in the ERZ. It is seen that the absolute mode temporal growth rate ω0,i for
the smallest back-flow velocity in the ERZ U01 = −0.1 is negative. A stronger
back-flow in the ERZ promotes the first helical absolute mode and absolute
instability is triggered for the back-flow velocity U01 ≈ −0.158. Further increase
of the external back-flow magnitude is favourable for the absolute mode growth
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rate. The increasing growth rate is associated with a substantial decrease of the
absolute mode frequency ω0,r.

Figure 4 shows the eigenfunctions for pressure and velocity perturbations
generated by the first helical mode. The eigenfunctions are shown in the form of
their magnitude related to the maximum value. It can be seen that the pressure
perturbation is concentrated around the outer shear layer of the internal jet.
The local maximum in the inner shear layer is decreasing with respect to the
peak in the outer shear layer along with the back-flow strength in the ERZ.
The maximum of the velocity perturbations for a weak back-flow in the ERZ is
located at the jet axis and is gradually moving to the centre of the ERZ along
with an increased back-flow velocity magnitude.
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In all the cases discussed above, it was assumed that the maximum velocity
magnitude in the external jet is equal to the magnitude of the back-flow in
the external recirculations zone. In real jets, a relation between the maximum
velocity and strength of the back-flow depends on a few factors: the Reynolds
number, the shape of the nozzle, width of the annular bluff body between jets.
Hence, it is an important question of how the flow instability depends on the
maximum velocity for a given back-flow in the ERZ. Velocity profiles for such
test cases are shown in Fig. 5a. The parameters of axial velocity profile for
the internal jet are exactly the same as for the test case BF int0 BF ext05 and the
parameters for the external jet are shown in Table B.2. The complex frequency of
the first helical absolutely unstable mode for a varying maximum velocity of the
external jet is shown in Fig. 5b. It is seen that for a given back-flow in the ERZ,
U01 = −0.5 in this case, increasing the maximum velocity in the external jet leads
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to a certain amplification of the temporal growth rate ω0,i of the absolute mode
and an increase of the absolute mode frequency ω0,r. However, the influence of
the maximum velocity in the external jet is quite weak, which means the absolute
instability conditions are determined rather by the strength of the back-flow in
the external recirculation zone than the maximum velocity of the external jet.

Analogous stability calculations were carried out for the test cases charac-
terised by the CRZ with the back-flow velocity U0 = −0.3. It is known from the
previous research by Michalke [20] and Boguslawski and Wawrzak [24]
that such an annular jet is absolutely unstable. The current studies have aimed
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Fig. 5. Influence of the maximum velocity in the ERZ, U0 = 0: (a) axial velocity profiles,
(b) complex frequency of the first absolute helical mode.
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Fig. 6. Influence of the back-flow velocity in the ERZ, U0 = −0.3: (a) axial velocity profiles,
(b) complex frequency of the first absolute helical mode.
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at an analysis of the influence of the external annular jet and the ERZ on the
first helical absolutely unstable mode. The velocity profiles of all the test cases
analysed with the back-flow velocity U0 = −0.3 are shown in Fig. 6a and the
corresponding parameters controlling the velocity profile shape are gathered in
Table B.3. The influence of the back-flow strength on the first absolute helical
mode is shown in Fig. 6b. The response of the absolute mode on an increasing
back-flow velocity magnitude in the ERZ is in this case significantly different
compared to the previous test cases with U0 = 0. A weak back-flow in the ERZ
has, in this case, only a slight impact on both the absolute mode growth rate
ω0,i and its frequency ω0,r. A stronger back-flow in the ERZ U01 < −0.3 leads
to significant amplification of the temporal growth rate. The frequency, in turn,
initially increases, attaining a maximum for U01 ≈ −0.4, and then decreases
along with the stronger back-flow. The evolution of the helical mode due to the
ERZ is illustrated in Fig. 7 by eigenfunctions of pressure and velocity perturba-
tions. For the back-flow velocity in the range −0.4 < U01 < −0.1 the pressure
perturbations are concentrated around the shear layer between the internal jet
and the CRZ at r ≈ 0.5 while for a stronger back-flow U01 < −0.4 the max-
imum of the pressure perturbations is shifted to the outer shear layer formed
between the internal jet and the ERZ. The velocity perturbation for a weak
back-flow in the ERZ is concentrated at the jet axis. Then with increasing the
back-flow magnitude a local maximum of the velocity perturbation appears at
the radius corresponding to the outer shear layer. For a strong back-flow in the
ERZ U01 < −0.5, for which the absolute mode growth rate is amplified, the
velocity perturbation eigenfunction is characterised by three local maxima: at
the jet axis, around the inner and outer shear layers of the internal jet.
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Again, the influence of the maximum velocity in the external jet was studied
for a fixed back-flow velocity in the ERZ. The velocity profiles analysed for the
test cases with U0 = −0.3 and U01 = −0.5 and changing the maximum velocity
in the external jet are shown in Fig. 8a and corresponding parameters of the
external jet are presented in Table B.6. An impact of the maximum velocity in
the external jet on the absolutely unstable helical mode is shown in Fig. 8b. It
is seen that the response of both the temporal growth rate ω0,i and the absolute
mode frequency ω0,r to a varying maximum velocity of the external jet is quite
weak as already observed for the jet with U0 = 0.
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Fig. 10. Influence of the back-flow velocity in the ERZ on eigenfunctions of the first helical
absolute mode, U0 = −0.5: (a) pressure perturbation, (b) velocity perturbation.

Finally, the influence of the ERZ on the jet stability with the back-flow
U0 = −0.5 in the CRZ was studied. The axial velocity profiles and the complex
frequency of the first helical absolute mode for this case are shown in Fig. 9. An
interesting observation is that a weak impact on the jet stability is in this case
reported for a wider range of the back-flow −0.5 < U01 < −0.1. The temporal
growth rate of the absolute mode is significantly amplified for U01 < −0.5. Tak-
ing into account both cases for different back-flow velocities in the CRZ zone one
could conclude that an influence of the back-flow in the ERZ is revealed only
when the back-flow in the ERZ exceeds the back-flow in the CRZ. Similarly to
the previous case, the amplified growth rate ω0,i as a function of the back-flow in
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Fig. 11. Influence of the maximum velocity in the ERZ, U0 = −0.5: (a) axial velocity
profiles, (b) complex frequency of the first absolute helical mode.
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the ERZ is associated with initially increased the absolute mode frequency ω0,r

which further drops down along with the stronger back-flow. An evolution of the
eigenfunctions along with the growing back-flow in the ERZ, shown in Fig. 10,
seems to be analogous to the previous case with qualitative changes of the per-
turbation distribution observed when the back-flow velocity exceeds U01 = −0.5.

Figure 11 presents influence of the maximum velocity in the external jet on
the complex frequency. As in the previous cases an increase of the maximum
velocity in the external jet is associated with a weak increase of the helical mode
frequency ω0,r, but contrary to the previous results, for U0 = −0.5, a slight
decrease of the absolute mode growth rate ω0,i is observed.

4.2. Swirling jets

In practical applications of double annular jets in combustion chambers, mix-
ing of fuel and oxidiser is enhanced and the flame is stabilised by the use of swirl
applied to the internal or external jet. Hence, the stability analysis was com-
pleted for swirling jets. Using the previous results for swirling single annular
jet [24] only an influence of the swirling degree for the internal and external
jets was analysed assuming that other parameters of the tangential velocity pro-
files had a minor influence on the stability characteristics. In all the calculations
for swirling jets the parameters defining the tangential velocity profiles in the
internal and external jets were as follows:

(4.1) N int
W = N ext

W = 5, RintWmax
= 1, RextWmax

= 3.

The swirl degrees were varying in ranges Aint = 0−0.9 and Aext = 0−0.9. The
tangential velocity profiles used in the calculations are shown in Fig. 12.
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Fig. 12. Tangential velocity profiles: (a) internal jet, (b) external jet.
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An influence of the swirling was analysed for the following test cases:
BF int0 BF ext03 , BF int0 BF ext06 , BF int03 BF

ext
03 , BF int03 BF

ext
06 , BF int05 BF

ext
03 , BF int05 BF

ext
06 .

In each test case the swirl degree of the internal or external jets was varying in
a wide range. Figure 13 shows an influence of the swirling in the internal and
external jets for the flow without the CRZ (U0 = 0). Such double annular jets
are absolutely unstable provided that a back-flow in the external jet is strong
enough. In both the cases analysed BF int0 BF ext03 and BF int0 BF ext06 the first helical
mode is absolutely unstable. An influence of the swirl imposed on the internal jet
is shown in Fig. 13a. It is seen that a swirl of the internal jet only slightly affects
the first absolute mode frequency ω0,r and the temporal growth rate ω0,i. For
both back-flow velocities in the external jet, U01 = −0.3 and U01 = −0.6, swirling
in the internal jet causes an increase of the absolute mode frequency ω0,r. For
U01 = −0.3 a limited swirl increases the growth rate and a stronger swirl leads to
a smaller growth rate ω0,i. In the case of a stronger back-flow in the external jet,
U01 = −0.6, a swirling in the internal jet leads to a decrease of the growth rate.
A swirl of the external jet, the influence of which is shown in Fig. 13b, for both
back-flow velocities U01 = −0.3 and U01 = −0.6, causes the increase of the abso-
lute mode frequency but the growth rate is significantly damped. It is seen that
for U01 = −0.3, swirling with a degree Aext > 0.5 leads to the helical mode sup-
pression. Further, an influence of the swirl on the eigenfuctions of pressure and
velocity perturbations is analysed for the test cases shown in Fig. 13. Figure 14
shows influence of the swirling of the internal jet on the perturbation amplitude in
the test case BF int0 BF ext03 . It is seen that the swirling degree Aint = 0.4, for which
the maximum of the growth rate is observed, increases the perturbation level in
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Fig. 15. Influence of the swirl degree of the internal jet on eigenfunctions of the first helical
absolute mode, U0 = 0, U01 = −0.6: (a) pressure perturbation, (b) velocity perturbation.

the region closer to the jet axis and for a higher swirl again the perturbation level
is intensified at the jet periphery. In the case of higher back-flow in the external
jet BF int0 BF ext06 , shown in Fig. 15, a monotonic growth of the perturbation ampli-
tude in the region of the internal jet is observed. Despite that the swirling of the
internal jet does not promote the absolutely unstable mode in this case, swirling
can control the location of the perturbation development. As shown in Fig. 13
swirling of the external jet decreases the growth rate leading even to suppression
of the absolute mode. However, Figs. 16 and 17 show that even though the max-
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Fig. 16. Influence of the swirl degree of the external jet on eigenfunctions of the first helical
absolute mode, U0 = 0, U01 = −0.3: (a) pressure perturbation, (b) velocity perturbation.
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Fig. 17. Influence of the swirl degree of the external jet on eigenfunctions of the first helical
absolute mode, U0 = 0, U01 = −0.6: (a) pressure perturbation, (b) velocity perturbation.

imum velocity of tangential velocity is located at the centre of the ERZ, swirling
in these cases leads to a shift of the perturbation maximum to the jet centre.

Further analysis refers to the test cases with the back-flow in the CRZ. An
influence of the swirl on the complex frequency of the test cases BF int03 BF

ext
03

and BF int03 BF
ext
06 is presented in Fig. 18. A swirl of the internal jet in these

cases affects the frequency ω0,r and the growth rate ω0,i of the first helical ab-
solutely unstable mode in a manner similar to that observed for the single an-
nular jet as shown by Boguslawski and Wawrzak [24]. A limited amount of
swirl promotes the absolute mode with a maximum of the growth rate observed
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Fig. 18. Influence of the swirl degree on the complex frequency of the first absolute helical
mode, U0 = −0.3: (a) swirling of internal jet, (b) swirling of external jet.
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Fig. 19. Influence of the swirl degree of the internal jet on eigenfunctions of the first helical
absolute mode, U0 = −0.3, U01 = −0.3: (a) pressure perturbation, (b) velocity perturbation.

for Aint ≈ 0.5. A monotonic growth of the absolute frequency ω0,r as a function
of the swirling degree is observed. For a higher back-flow velocity in the ERZ
for U01 = −0.6 influence of the swirl on the frequency is weaker. By contrast,
swirling of the external jet leads to a monotonic increase of the absolute mode
growth rate in the case of the lower back-flow U01 = −0.3 and slight damping for
the higher back-flow velocity U01 = −0.6. The internal jet swirling affects weakly
the pressure and velocity eigenfunctions in the case of U01 = −0.3 as shown in
Fig. 19. The pressure perturbation maximum is moving to the jet axis and some
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Fig. 20. Influence of the swirl degree of the internal jet on eigenfunctions of the first helical
absolute mode, U0 = −0.3, U01 = −0.6: (a) pressure perturbation, (b) velocity perturbation.

(a) (b)

r

|p
|/

|p
m

a
x
|

0.5 1 1.5 2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

1

A
ext

=0.2

A
ext

=0.4

A
ext

=0.6

A
ext

=0.8

^
^

0.5 1 1.5 2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

1

A
Ext

=0.2

A
Ext

=0.4

A
Ext

=0.6

A
Ext

=0.8

^
^

Fig. 21. Influence of the swirl degree of the external jet on eigenfunctions of the first helical
absolute mode, U0 = −0.3, U01 = −0.3: (a) pressure perturbation, (b) velocity perturbation.

growth is observed in the outer shear layer of the internal jet as a function of the
swirling degree. The velocity perturbation is also slightly growing in the inner
shear layer of the internal jet compared to the perturbation maximum located at
the jet axis. A stronger influence of the swirling of the internal jet is observed for
the back-flow velocity U01 = −0.6 shown in Fig. 20. Quite a similar influence of
the external jet swirl on the pressure and velocity perturbation eigenfunctions is
observed in Figs. 21 and 22. Again, in the case of the weaker back-flow velocity
U01 = −0.3, the influence of the swirl is weak and much stronger for the higher
back-flow magnitude.
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Fig. 22. Influence of the swirl degree of the external jet on eigenfunctions of the first helical
absolute mode, U0 = −0.3, U01 = −0.6: (a) pressure perturbation, (b) velocity perturbation.
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Fig. 23. Influence of the swirl degree on the complex frequency of the first absolute helical
mode, U0 = −0.5: (a) swirling of internal jet, (b) swirling of external jet.

Finally, the test cases with the strongest back-flow U0 = −0.5 in the CRZ
were analysed. Figure 23 shows a swirl influence on the complex frequency of
the first helical mode for the test cases BF int05 BF

ext
03 and BF int05 BF

ext
06 . One can

see that also in this case a limited amount of the internal jet swirl promotes the
absolutely unstable first helical mode. The maximum of the growth rate ω0,i in
both the cases analysed is for the swirling degree Aint ≈ 0.5. Swirling of the
internal jet leads to an increase in the absolute mode frequency ω0,r. Swirling of
the external jet, in the case U01 = −0.3, causes an increase of both the absolute
mode frequency and the growth rate while for the stronger back-flow in the ERZ
a weak swirl leads to a slight decrease of the frequency and the growth rate and
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Fig. 24. Influence of the swirl degree of the internal jet on eigenfunctions of the first helical
absolute mode, U0 = −0.5, U01 = −0.3: (a) pressure perturbation, (b) velocity perturbation.
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Fig. 25. Influence of the swirl degree of the external jet on eigenfunctions of the first helical
absolute mode, U0 = −0.5, U01 = −0.3: (a) pressure perturbation, (b) velocity perturbation.

a stronger swirl increases the frequency and the growth rate. In the case of the
strongest back-flow in the CRZ, the perturbations are located in this zone and
the swirl of the internal jet very weakly affects the eigenfunctions, as shown in
Fig. 24. Similarly, the swirl of the external jet very weakly influences perturbation
distribution for U0 = −0.5 shown in Fig. 25. The influence of the swirl of the
internal and external jets is also weak in the case of stronger back-flow in the
ERZ U01 = −0.6 (not shown in the paper). One can conclude that if the back-
flow in the CRZ is strong enough the first helical mode is triggered in this zone
and a swirl can influence the perturbation frequency and the growth rate with
a very weak impact on perturbation amplitude distribution across the jet.
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5. Conclusions

The paper presented the local stability analysis of the double annular non-
swirling and swirling jets. The calculations showed that in the case of the non-
swirling jet the first absolutely unstable helical mode can be triggered by a back-
flow in the CRZ or the ERZ. For the test cases without the back-flow in the CRZ,
a relatively weak back-flow in the ERZ led to the absolute instability of the first
helical mode. By contrast, for a sufficiently strong back-flow in the CRZ, the
instability characteristics were affected by the ERZ only if the back-flow was
stronger than the one in the CRZ. The increased growth rate by the back-flow
in the ERZ was associated with a decrease of the absolute mode frequency.
The maxima of the perturbations triggered by the absolute mode are located
close to the jet axis if the flow instability is controlled by the back-flow in the
CRZ or in the region of the ERZ in all the cases in which the absolute mode
is triggered by the back-flow in this zone. The influence of the swirl in the
internal or external jet was studied for chosen test cases. When the absolute
mode was generated by the back-flow in the ERZ without back-flow in the CRZ,
the influence of the swirl in the internal jet was very weak, while the swirl of
the external jet resulted in the increased frequency and the decreased growth
rate. If the flow was dominated by the back-flow in the CRZ, a limited swirl
of the internal jet promoted the absolute mode growth rate with the maximum
for Aint ≈ 0.5. The frequency of the helical mode was growing along with the
swirling degree of the internal jet. The influence of the swirl in the external jet
depended on a relation between the strength of the back-flows in the CRZ and
ERZ. Swirling affected also the shape of the eigenfunctions of the first helical
mode. In general, the influence of the swirl was stronger for the flow without
back-flow in the CRZ and weaker when the flow was controlled by this back-
flow.

Appendix A. Procedures for calculating the base flow parameters

The obvious constraints for such a velocity profile are as follows:

(A.1)

dU int

dr

∣∣∣∣
r=0

= 0,
dU int

dr

∣∣∣∣
r=R01

= 0,

dU ext

dr

∣∣∣∣
r=R01

= 0,
dU ext

dr

∣∣∣∣
r=∞

= 0.

It can easily be verified that the function describing the axial velocity profile
satisfies these constraints.
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If the radius tends to zero then

lim
r→0

U int(r) = U intin tanh(−bintin Rintin )− U intout tanh(−bintoutRintout)(A.2)

+
bintin U

int
in

cosh2(−bintin Rintin )b0,intin

− bintoutU
int
out

cosh2(−bintoutRintout)b
0,int
out

− bintin U
int
in

cosh2[bintin (R01 −Rintin )]

[1− tanh(b0,intin R01)]

b0,intin

+
bintoutU

int
out

cosh2[bintout(R01 −Rintout)]
[1− tanh(b0,intout R01)]

b0,intout

− U intin + U intout + U int∞ = U0.

As U0 is imposed as a parameter there is a relation between U intin and U intout.
Assuming a certain value for U intin the parameter U intout is expressed as

(A.3) U intout =
U intin L

int
in − U0 + U int∞
Lintout

,

where

Lintin = tanh(−bintin Rintin ) +
bintin

cosh2(−bintin Rintin )b0,intin

(A.4)

− bintin
cosh2[bintin (R01 −Rintin )]

[1− tanh(b0,intin R01)]

b0,intin

− 1,

Lintout = tanh(−bintoutRintout) +
bintout

cosh2(−boutRintout)b
0,int
out

(A.5)

+
bintout

cosh2[bintout(R01 −Rintout)]
[1− tanh(bint0,outR01)]

bint0,out

− 1.

The U int∞ parameter is used to obtain the presumed back flow velocity U01 in the
ERZ for r = R01

U int∞ = U01 − U intin tanh[bintin (R01 −Rintin )](A.6)

+ U intout tanh[bintout(R01 −Rintout)]

− bintin U
int
in

cosh2(−bintin Rintin )

[1− tanh(b0,intin R01)]

b0,intin

+
bintoutU

int
out

cosh2(−bintoutRintout)
[1− tanh(b0,intout R01)]

b0,intout

+
bintin U

int
in

cosh2[bintin (R01 −Rintin )]

1

b0,intin

− bintoutU
int
out

cosh2[bintout(R01 −Rintout)]
1

b0,intout

+ U intin − U intout.
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Velocity gradients in inner and outer shear layers are controlled by bintin and bintout
parameters, respectively. The parameter U intin is chosen in order to get a pre-
sumed maximum value of the axial velocity U intmax = 1. Varying bintin -coefficient
Rintout is kept constant while Rintin is calculated to obtain the maximum of the
velocity at a chosen radius RintUmax

= 1. Conversely, varying bintout the Rintin is fixed
while Rintout is calculated to obtain the maximum of the velocity at a chosen
radius RintUmax

= 1. The required parameters are obtained by Newton’s proce-
dure [33].

Further the velocity profile is continued accross the external jet starting from
the radius R01 with the function U ext(r). Apart from the zero gradient at the R01

the velocity in the ERZ must be equal to the presumed back-flow velocity U01

(A.7) U ext(R01) = U int(R01) = U01.

Hence,

U ext(R01) = U extin tanh[bextin (R01 −Rextin )](A.8)

− U extout tanh[bextout(R01 −Rextout)]

bextin U
ext
in

cosh2[bextin (R01 −Rextin )]

1

b0,extin

− bextoutU
ext
out

cosh2[bextout(R01 −Rextout)]

1

b0,extout

− U extin + U extout = U01.

As U01 is the presumed parameter of the velocity profile it gives a relation be-
tween U extin and U extout

(A.9) U extout =
U extin Lextin − U01

Lextout

,

where

Lextin = tanh[bextin (R01 −Rextin )] +
bextin

cosh2[bextin (R01 −Rextin )]b0,extin

− 1,(A.10)

Lextout = tanh[bextout(R01 −Rextout)] +
bextout

cosh2[bextout(R01 −Rextout)]b
0,ext
out

− 1.(A.11)

All other parameters for the external annular jet are calculated in an analogous
way as for the internal one.
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Appendix B. Tables with the base flow parameters

Table B.1. List of the parameters of the axial velocity profiles for U0 = 0.

Internal annular jet
Test case Rint

out U int
in U int

out U∞ U0

BF int
0 BF ext

01 1.2908 2.0222 2.1198 −0.6927 0

BF int
0 BF ext

02 1.3289 1.9619 2.1612 −0.8899 0

BF int
0 BF ext

03 1.3646 1.9136 2.2191 −1.0970 0

BF int
0 BF ext

04 1.3985 1.8740 2.2908 −1.3152 0

BF int
0 BF ext

05 1.4309 1.8410 2.3748 −1.5455 0

BF int
0 BF ext

06 1.4621 1.8130 2.4703 −1.7892 0

BF int
0 BF ext

07 1.4922 1.7889 2.5770 −2.0479 0

BF int
0 BF ext

08 1.5215 1.7680 2.6951 −2.3232 0

External annular jet
Test case Rext

in Uext
max Uext

in Uext
out U01

BF int
0 BF ext

01 2.1556 0.1 0.3623 0.1128 −0.1

BF int
0 BF ext

02 2.1556 0.2 0.7245 0.2256 −0.2

BF int
0 BF ext

03 2.1556 0.3 1.0868 0.3384 −0.3

BF int
0 BF ext

04 2.1557 0.4 1.4490 0.4512 −0.4

BF int
0 BF ext

05 2.1557 0.5 1.8113 0.5641 −0.5

BF int
0 BF ext

06 2.1557 0.6 2.1736 0.6769 −0.6

BF int
0 BF ext

07 2.1557 0.7 2.5358 0.7897 −0.7

BF int
0 BF ext

08 2.1557 0.8 2.8981 0.9025 −0.8

Table B.2. List of the parameters of the axial velocity profiles for U0 = 0,
U01 = −0.5, varying Uext

max.

External annular jet
Test case Rext

in Uext
max Uext

in Uext
out U01

BF int
0 BF ext

05 Umaxext04 1.9924 0.4 2.2072 0.4449 −0.5

BF int
0 BF ext

05 Umaxext06 2.2325 0.6 1.8082 0.6836 −0.5

BF int
0 BF ext

05 Umaxext07 2.2826 0.7 1.8831 0.8038 −0.5

Table B.3. List of the parameters of the axial velocity profiles for U0 = −0.3.

Internal annular jet
Test case Rint

out U int
in U int

out U∞ U0

BF int
03 BF

ext
01 1.1800 2.9545 2.7672 −0.60144 −0.3

BF int
03 BF

ext
02 1.2163 2.8280 2.7333 −0.77579 −0.3

BF int
03 BF

ext
03 1.3646 2.7291 2.7291 −0.95622 −0.3

BF int
03 BF

ext
04 1.2817 2.6496 2.7469 −1.1431 −0.3

BF int
03 BF

ext
05 1.3116 2.5843 2.7818 −1.3370 −0.3

BF int
03 BF

ext
06 1.3401 2.5297 2.8306 −1.5382 −0.3

BF int
03 BF

ext
07 1.3673 2.4834 2.8914 −1.7474 −0.3

BF int
03 BF

ext
08 1.3934 2.4435 2.9626 −1.9651 −0.3
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Table B.3. [cont.]

External annular jet
Test case Rext

in Uext
max Uext

in Uext
out U01

BF int
03 BF

ext
01 2.1556 0.1 0.3623 0.1128 −0.1

BF int
03 BF

ext
02 2.1556 0.2 0.7245 0.2256 −0.2

BF int
03 BF

ext
03 2.1556 0.3 1.0868 0.3384 −0.3

BF int
03 BF

ext
04 2.1556 0.4 1.4490 0.4512 −0.4

BF int
03 BF

ext
05 2.1556 0.5 1.8113 0.5640 −0.5

BF int
03 BF

ext
06 2.1556 0.6 2.1736 0.6768 −0.6

BF int
03 BF

ext
07 2.1557 0.7 2.5358 0.7897 −0.7

BF int
03 BF

ext
08 2.1557 0.8 2.8981 0.9025 −0.8

Table B.4. List of the parameters of the axial velocity profiles for U0 = −0.5,
U01 = −0.5, varying Uext

max.

External annular jet
Test case Rext

in Uext
max Uext

in Uext
out U01

BF int
05 BF

ext
05 Umaxext04 1.9923 0.4 2.2074 0.4449 −0.5

BF int
05 BF

ext
05 Umaxext06 2.2325 0.6 1.8082 0.6835 −0.5

BF int
05 BF

ext
05 Umaxext07 2.2825 0.7 1.883 0.8038 −0.5

Table B.5. List of the parameters of the axial velocity profiles for U0 = −0.5.

Internal annular jet
Test case Rint

out U int
in U int

out U∞ U0

BF int
05 BF

ext
01 1.1690 3.0754 2.6935 −0.58452 −0.5

BF int
05 BF

ext
02 1.2051 2.9598 2.6702 −0.75604 −0.5

BF int
05 BF

ext
03 1.2387 2.8684 2.6730 −0.9333 −0.5

BF int
05 BF

ext
04 1.2701 2.7952 2.6959 −1.1166 −0.5

BF int
05 BF

ext
05 1.3000 2.7334 2.7334 −1.3067 −0.5

BF int
05 BF

ext
06 1.3283 2.6820 2.7840 −1.5036 −0.5

BF int
05 BF

ext
07 1.3553 2.6382 2.8454 −1.7080 −0.5

BF int
05 BF

ext
08 1.3812 2.6004 2.9165 −1.9203 −0.5

External annular jet
Test case Rext

in Uext
max Uext

in Uext
out U01

BF int
05 BF

ext
01 2.1556 0.1 0.3623 0.1128 −0.1

BF int
05 BF

ext
02 2.1556 0.2 0.7245 0.2256 −0.2

BF int
05 BF

ext
03 2.1556 0.3 1.0868 0.3384 −0.3

BF int
05 BF

ext
04 2.1556 0.4 1.4491 0.4512 −0.4

BF int
05 BF

ext
05 2.1556 0.5 1.8113 0.5640 −0.5

BF int
05 BF

ext
06 2.1556 0.6 2.1736 0.6768 −0.6

BF int
05 BF

ext
07 2.1556 0.7 2.5358 0.7897 −0.7

BF int
05 BF

ext
08 2.1556 0.8 2.8981 0.9025 −0.8
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Table B.6. List of the parameters of the axial velocity profiles for U0 = −0.3,
U01 = −0.5, varying Uext

max.

External annular jet
Test case Rext

in Uext
max Uext

in Uext
out U01

BF int
03 BF

ext
05 Umaxext04 1.9924 0.4 2.2073 0.4449 −0.5

BF int
03 BF

ext
05 Umaxext06 2.2325 0.6 1.8082 0.6835 −0.5

BF int
03 BF

ext
05 Umaxext07 2.2826 0.7 1.8831 0.8038 −0.5

Appendix C. Complex wavenumbers and frequencies of the first ab-
solutely unstable helical mode

Table C.1. Complex wavenumbers and frequencies for the test cases for U0 = 0.

Test case α0,r α0,i ω0,r ω0,i

BF int
0 BF ext

01 1.81463 −1.43517 0.71026 −0.08734

BF int
0 BF ext

02 1.75109 −1.06123 0.69334 0.05870

BF int
0 BF ext

03 1.72710 −0.83300 0.65487 0.17083

BF int
0 BF ext

04 1.71304 −0.65249 0.60893 0.26359

BF int
0 BF ext

05 1.70257 −0.49863 0.55939 0.34371

BF int
0 BF ext

06 1.69520 −0.36200 0.50819 0.41491

BF int
0 BF ext

07 1.68844 −0.24109 0.45660 0.47963

BF int
0 BF ext

08 1.68437 −0.13171 0.40560 0.53953

BF int
0 BF ext

05 Umaxext04 1.68410 −0.52077 0.54760 0.33570

BF int
0 BF ext

05 Umaxext06 1.71859 −0.47064 0.56994 0.35415

BF int
0 BF ext

05 Umaxext07 1.73852 −0.44232 0.58135 0.36730

Table C.2. Complex wavenumbers and frequencies for the test cases for
U0 = −0.3.

Test case α0,r α0,i ω0,r ω0,i

BF int
03 BF

ext
01 1.58692 −0.84575 0.44884 0.10429

BF int
03 0BF ext

02 1.55857 −0.85283 0.44843 0.11973

BF int
03 BF

ext
03 1.55814 −0.86931 0.45904 0.14467

BF int
03 0BF ext

04 1.78256 −0.77134 0.49988 0.20427

BF int
03 BF

ext
05 1.74865 −0.54450 0.48371 0.30755

BF int
03 BF

ext
06 1.73313 −0.40186 0.44638 0.38995

BF int
03 BF

ext
07 1.72477 −0.27768 0.40326 0.46161

BF int
03 BF

ext
08 1.71833 −0.16894 0.35800 0.52641

BF int
03 BF

ext
05 Umaxext04 1.72772 −0.57714 0.470716 0.30004

BF int
03 BF

ext
05 Umaxext06 1.76676 −0.50808 0.49624 0.31874

BF int
03 BF

ext
05 Umaxext07 1.79015 −0.47012 0.51059 0.33362
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Table C.3. Complex wavenumbers and frequencies for the test cases for
U0 = −0.5.

Test case α0,r α0,i ω0,r ω0,i

BF int
05 BF

ext
01 1.460510 −0.49020 0.29383 0.20518

BF int
05 0BF ext

02 1.45278 −0.50494 0.29221 0.21275

BF int
05 BF

ext
03 1.44837 −0.51349 0.29433 0.22348

BF int
05 0BF ext

04 1.45331 −0.53384 0.30289 0.23889

BF int
05 BF

ext
05 1.49072 −0.58576 0.32468 0.26122

BF int
05 BF

ext
06 1.78961 −0.430295 0.37495 0.34231

BF int
05 BF

ext
07 1.76301 −0.27023 0.34917 0.43509

BF int
05 BF

ext
08 1.75526 −0.15589 0.31275 0.50953

BF int
05 BF

ext
05 Umaxext04 1.48872 −0.57005 0.31566 0.26664

BF int
05 BF

ext
05 Umaxext06 1.47900 −0.60759 0.33628 0.25416

BF int
05 BF

ext
05 Umaxext07 1.44462 −0.63800 0.34955 0.24231

Table C.4. Complex wavenumbers and frequencies for the test cases BF int
0 BF ext

03

and BF int
0 BF ext

06 and varying swirl number of the internal jet.

Test case
BF int

0 BF ext
03 BF int

0 BF ext
06

Aint α0,r α0,i ω0,r ω0,i α0,r α0,i ω0,r ω0,i

0.1 1.76748 −0.87990 0.66729 0.17571 1.70551 −0.37495 0.52753 0.41904

0.2 1.74977 −0.95675 0.67716 0.18302 1.70401 −0.39948 0.54689 0.41730

0.3 1.66121 −0.98129 0.69809 0.19777 1.70732 −0.41139 0.56646 0.41358

0.4 1.63544 −0.90354 0.73503 0.20587 1.72044 −0.41608 0.58484 0.40747

0.5 1.71823 −0.83664 0.77432 0.19391 0.17398 −0.42041 0.60148 0.39932

0.6 1.82720 −0.84721 0.79939 0.17160 1.76532 −0.42091 0.61673 0.38902

0.7 1.79240 −0.42372 0.63115 0.37558 1.79240 −0.42372 0.63115 0.37558

0.8 −− −− −− −− 1.82016 −0.42397 0.64508 0.35710

0.9 −− −− −− −− 1.84480 −0.42039 0.65842 0.33035

Table C.5. Complex wavenumbers and frequencies for the test cases BF int
0 BF ext

03

and BF int
0 BF ext

06 and varying swirl number of the external jet.

Test case
BF int

0 BF ext
03 BF int

0 BF ext
06

Aext α0,r α0,i ω0,r ω0,i α0,r α0,i ω0,r ω0,i

0.1 1.78000 −0.83559 0.68787 0.15762 1.70577 −0.3723 0.53484 0.39868

0.2 1.83042 −0.86060 0.71612 0.13397 1.72188 −0.38546 0.56228 0.37870

0.3 1.89535 −0.90022 0.74201 0.10775 1.73965 −0.39700 0.59069 0.35519

0.4 1.98289 −0.97296 0.76118 0.08063 1.76150 −0.41238 0.62017 0.32853

0.5 2.12158 −1.12779 0.76487 0.05713 0.17398 −0.42041 0.60148 0.39932

0.6 −− −− −− −− 1.80684 −0.44745 0.68304 0.26872

0.7 −− −− −− −− 1.82205 −0.47295 0.71624 0.23822

0.8 −− −− −− −− 1.82500 −0.52512 0.74950 0.21060
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Table C.6. Complex wavenumbers and frequencies for the test cases BF int
03 BF

ext
03

and BF int
03 BF

ext
06 and varying swirl number of the internal jet.

Test case
BF int

03 BF
ext
03 BF int

03 BF
ext
06

Aint α0,r α0,i ω0,r ω0,i α0,r α0,i ω0,r ω0,i

0.1 1.53346 −0.78236 0.44357 0.24524 1.73073 −0.47301 0.44183 0.40087

0.2 1.51150 −0.66519 0.46394 0.32814 1.67817 −0.52097 0.44193 0.42299

0.3 1.51257 −0.52926 0.50103 0.38875 1.61652 −0.48225 0.45641 0.45010

0.4 1.55209 −0.39949 0.54437 0.42562 1.61768 −0.41038 0.48339 0.46751

0.5 1.60119 −0.29538 0.58753 0.43946 1.65854 −0.35149 0.51311 0.47005

0.6 1.66042 −0.22207 0.62620 0.43170 1.70786 −0.31520 0.53879 0.45835

0.7 1.71488 −0.17580 0.65760 0.40367 1.74990 −0.29774 0.55660 0.43436

0.8 1.760300 −0.15356 0.67959 0.35518 1.77005 −0.29526 0.56478 0.40031

0.9 1.78956 −0.15406 0.68807 0.28200 1.76042 −0.29816 0.56287 0.35804

Table C.7. Complex wavenumbers and frequencies for the test cases BF int
03 BF

ext
03

and BF int
03 BF

ext
06 and varying swirl number of the external jet.

Test case
BF int

03 BF
ext
03 BF int

3 0BF ext
06

Aext α0,r α0,i ω0,r ω0,i α0,r α0,i ω0,r ω0,i

0.1 1.55468 −0.82000 0.45516 0.17053 1.74870 −0.42748 0.46106 0.37537

0.2 1.54328 −0.77258 0.45629 0.19936 1.78290 −0.44628 0.47886 0.36154

0.3 1.53795 −0.72564 0.46270 0.22681 1.80078 −0.49748 0.48733 0.34277

0.4 1.51965 −0.66220 0.47383 0.25388 1.80184 −0.59147 0.48864 0.32571

0.5 1.50289 −0.59530 0.48759 0.27843 1.64511 −0.63215 0.48345 0.32294

0.6 1.49066 −0.52518 0.50366 0.30058 1.58194 −0.54430 0.48978 0.33018

0.7 1.47513 −0.44731 0.52169 0.32001 1.55432 −0.45931 0.50327 0.33812

0.8 1.46670 −0.36131 0.54133 0.33634 1.54232 −0.36972 0.52117 0.34531

0.8 1.46253 −0.26858 0.56250 0.34930 1.54375 −0.27020 0.54206 0.35077

Table C.8. Complex wavenumbers and frequencies for the test cases BF int
05 BF

ext
03

and BF int
05 BF

ext
06 and varying swirl number of the internal jet.

Test case
BF int

05 BF
Ixt
03 BF int

5 0BF Ixt
06

Aixt α0,r α0,i ω0,r ω0,i α0,r α0,i ω0,r ω0,i

0.1 1.43719 −0.44869 0.29889 0.33305 1.55140 −0.51196 0.31173 0.39045

0.2 1.43877 −0.35088 0.32516 0.41730 1.50708 −0.38528 0.31093 0.45969

0.3 1.46001 −0.25754 0.36229 0.47788 1.51839 −0.28802 0.33351 0.50984

0.4 1.49489 −0.17096 0.40380 0.51671 1.55081 −0.21074 0.36508 0.54133

0.5 1.54086 −0.09896 0.44586 0.53576 1.59487 −0.14802 0.39880 0.55562

0.6 1.58499 −0.04280 0.48597 0.53649 1.63894 −0.10457 0.43088 0.55428

0.7 1.62989 −0.00190 0.52242 0.51998 1.68206 −0.07669 0.45898 0.53869

0.8 1.67165 0.02528 0.55409 0.48665 1.71795 −0.06437 0.48182 0.50986

0.9 1.70889 0.04011 0.58021 0.43557 1.74432 −0.06684 0.49849 0.46796
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Table C.9. Complex wavenumbers and frequencies for the test cases BF int
05 BF

ext
03

and BF int
05 BF

ext
06 and varying swirl number of the external jet.

Test case
BF int

05 BF
ext
03 BF int

05 BF
ext
06

Aext α0,r α0,i ω0,r ω0,i α0,r α0,i ω0,r ω0,i

0.1 1.44391 −0.48403 0.29714 0.25875 1.85765 −0.56981 0.35606 0.31899

0.2 1.44206 −0.44880 0.30380 0.29049 1.53111 −0.53002 0.32451 0.34004

0.3 1.43716 −0.40226 0.31346 0.31892 1.50496 −0.45616 0.31961 0.35867

0.4 1.43791 −0.35142 0.32548 0.34413 1.49121 −0.39549 0.32222 0.37524

0.5 1.44102 −0.29380 0.33937 0.36612 1.48658 −0.33158 0.32980 0.38954

0.6 1.44957 −0.23412 0.35474 0.38486 1.49102 −0.27190 0.34093 0.40143

0.7 1.46265 −0.17542 0.37121 0.40031 1.50451 −0.20418 0.35463 0.41073

0.8 1.47923 −0.11392 0.38851 0.41244 1.52003 −0.13788 0.370147 0.41731

0.9 1.50121 −0.05424 0.40635 0.42118 1.54473 −0.07505 0.38689 0.42100
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