PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of models for effective thermal conductivity of composite materials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The solutions of Maxwell and Rayleigh were the first of many attempts to determine the effective thermal conductivity of heterogeneous material. Early models assumed that no thermal resistance exists between the phases in heterogeneous material. Later studies on solid-liquid and solid-solid boundaries revealed that a temperature drop occurs when heat flows through a boundary between two phases and, as a consequence, the interfacial thermal resistance should be included in the heat transfer model. This paper is a review of the most popular expressions for predicting the effective thermal conductivity of composite materials using the properties and volume fractions of constituent phases. Subject to review were empirical, analytical and numerical models, among others.
Rocznik
Strony
14--24
Opis fizyczny
Bibliogr. 62 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
Bibliografia
  • [1] J. Strutt (Lord Rayleigh).: On the influence of obstacles arranged in rectangular order upon the properties of a medium, Phil. Mag., vol. 34, pp. 481, 1892.
  • [2] J. C. Maxwell, A treatise on electricity and magnetism, vol. I, 3rd Ed, Oxford University Press, 1904.
  • [3] A. G. Every, Y. Tzou, D. P. H. Hasselman, R. Raj, The effect of particle size on the thermal conductivity of zns/diamond composites, Acta Metall. Mater. 40 (1) (1992) 123.
  • [4] A. Devpura, P. E. Phelan, R. S. Prasher, Size effects on the thermal conductivity of polymers laden with highly conductive filler particles, Microscale Thermophysical Engineering 5 (2001) 177.
  • [5] D. P. H. Hasselman, L. F. Johnson, Effective thermal conductivity of composites with interfacial thermal barrier resistance, J. Compos. Mater. 21 (6) (1987) 508.
  • [6] P. L. Kapitza, The study of heat transfer in helium ii, J. Phys. USSR 4 (3) (1941) 181, [in Russian].
  • [7] R. O. P. E. T. Swarz, Thermal boundary resistance, Rev. Mod. Phys. 61 (3) (1989) 605.
  • [8] R. S. Prasher, P. E. Phelan, A scattering-mediated acoustic mismatch model for the prediction of thermal boundary resistance, Journal of Heat Transfer 123 (1) (2001) 105.
  • [9] P. Furma´nski, T. S. Wi´sniewski, J. Banaszek, Thermal contact resistance and other thermal phenomena at solid-solid interface, ITC PW, Warszawa, 2008.
  • [10] A. Devpura, P. E. Phelan, R. S. Prasher, Percolation theory applied to the analysis of thermal interface materials in flip-chip technology, in: Thermomechanical Phenomena in Electronic Systems - Proceedings of the Intersociety Conference, Vol. 1, Las Vegas, Nevada, 200, p. 21.
  • [11] Q. Xue, A percolation model of metal-insulator composites, Physica B 325 (2003) 195.
  • [12] G. Zhang, Y. Xia, H. Wang, Y. Tao, G. Tao, H. W. S. Tu, A percolation model of thermal conductivity for filled polymer composites, Journal of Composite Materialse 44 (8) (2010) 963.
  • [13] R. B. Bird,W. E. Stewart, E. N. Lightfoot, Transport phenomena, John Wiley & Sons, 2007.
  • [14] A. Eucken.: Die Wärmeleitfähigkeit Keramischer, Fester Stoffe - Ihre Berechnung aus der Wärmeleitfähigkeit der Bestandteile, VDI Forschungsheft 353, Beilage zu, Forschung auf dem Ggebiete des Ingenieurwesens, Ausgabe B, Band 3, 1932.
  • [15] H. C. Burger, Das lertvermogen verdumter mischkristallfreier lonsungen, Phys. Zs. 20 (1915) 73.
  • [16] R. L. Hamilton, O. K. Crosser, Thermal conductivity of heterogeneous two component systems, Ind. Eng. Chem. Fundamen, 1 (3) (1962) 187.
  • [17] B. R. P. (Jr), G. E. Youngblood, D. P. H. Hasselman, L. D. Bentsen., Effect of thermal expansion mismatch on the thermal diffusivity of glass-ni composites, J. Am. Ceram. Soc. 63 (1980) 581.
  • [18] Y. Benveniste, T. Miloh, The effective conductivity of composites with imperfect thermal contact at constituent interfaces, Int. J. Eng. Sci. 24 (9) (1986) 1537.
  • [19] Y. Benveniste, Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case, J. Appl. Phys. 61 (8) (1987) 2840.
  • [20] D. A. G. Bruggeman, Berechnung verschiedener physikalischer kkonstanten von heterogenen substanzen, Ann. Phys. 24 (1935) 636.
  • [21] R. Landauer, The electrical resistance of binary metallic mixtures, J. Appl. Phys. 23 (7) (1952) 779.
  • [22] R. Tavangar, J. Molina, L. Weber, Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast, Scripta Materialia 56 (2007) 357.
  • [23] J. H. Conway, N. J. Sloane, E. Bannai, Sphere packings, lattices, and groups, Springer, 1999.
  • [24] A. D. K. A. Bejan, Heat transfer handbook, John Wiley & Sons, 2003.
  • [25] L. E. Nielsen, The thermal and electrical conductivity of two phase systems, Ind. Eng. Chem. Fundam. 13 (1) (1974) 17.
  • [26] L. C. Davis, B. E. Artz, Thermal conductivity of metal-matrix composites, Journal of Applied Physics 77 (10) (1995) 4954.
  • [27] M. Monde, Y. Mitsutake, A new estimation method of thermal diffusivity using analytical inverse solution for one-dimensional heat conduction, International Journal of Heat and Mass Transfer 44 (2001) 3169-3177.
  • [28] A. Salazar, J. M. Terron, A. Sánchez-Lavega, R. Celorrio, On the effective thermal diffusivity of fiber-reinforced composites, Appl. Phys. Lett. 80 (2002) 1903.
  • [29] X. Q. Fang, Non-steady effective thermal conductivity of matrix composite materials with high volume concentration of particles, Computational Materials Science 44 (2008) 481-488.
  • [30] X. Q. Fang, T. Z. J-X. Liu, Scattering of thermal waves and unsteady effective thermal conductivity of particular composites with functionally graded interface, Journal of Composite Materials 43 (21) (2009) 2351-2369.
  • [31] X. Q. Fang, C. Hu, D. Wang, Scattering of thermal waves and non-steady effective thermal conductivity of composites with coated fibers, Thermochimica Acta 469 (2008) 109-115.
  • [32] X. Q. Fang, Scattering of thermal waves and non-steady effective thermal conductivity of composites with coated particles, Applied Thermal Engineering 29 (2009) 925-931.
  • [33] O. J. Lee, K. H. Lee, T. J. Yim, S. Y. Kim, K. P. Yoo, Determination of mesopore size of aerogels from thermal conductivity measurements, J Non-Cryst Solids 298 (2002) 287-292.
  • [34] R. G. S. Q Zeng, A. Hunt, Geometric structure and thermal conductivity of porous medium silica aerogel, ASME Journal of Heat Transfer 117 (1995) 1055-1058.
  • [35] J.-J. Zhao, Y.-Y. Duan, X.-D. Wang, B.-X. Wang, Experimental and analytical analyses of the thermal conductivities and high-temperature characteristics of silica aerogels based on microstructures, J. Phys. D: Appl. Phys. 46 (2013) 12, 015304.
  • [36] J.-J. Zhao, Y.-Y. Duan, X.-D. Wang, B.-X. Wang, Effects of solid-gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels, J Nanopart Res 14 (2012) 1024.
  • [37] J.-J. Zhao, Y.-Y. Duan, X.-D. Wang, B.-X. Wang, A 3-d numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure, Journal of Non-Crystalline Solids 358 (2012) 1287-1297.
  • [38] G. Lu, X.-D. Wang, Y.-Y. Duan, X.-W. Li, Effects of non-ideal structures and high temperatures on the insulation properties of aerogel-based composite materials, Journal of Non-Crystalline Solids 357 (2011) 3822-3829.
  • [39] C. F. Matt, M. E. Cruz, Effective thermal conductivity of composite materialse with 3-d microstructures and interfacial thermal resistance, Numerical Heat Transfer, Part A 53 (2008) 577.
  • [40] Y. Xu, M. Yamazaki, K. Y. H.Wang, Development of an internet system for composite design and thermophysical property prediction, Materials Transactions 47 (8) (2006) 1882.
  • [41] C. Yue, Y. Zhang, Z. Hu, J. Liu, Z. Cheng, Modeling of the effective thermal conductivity of composite materials with fem based on resistor networks approach, Microsyst. Technol. 16 (2010) 633.
  • [42] J. Yvonnet, C. Q.-C. He, Numerical modelling of the effective conductivities of composites with arbitrarily shaped inclusions and highly conducting interface, Composites Science and Technology 68 (2008) 2818.
  • [43] H. Jopek, T. Strek.: Optimization of the effective thermal conductivity of a composite [in:] Convection and conduction heat transfer, ed. A. Ahsan, InTech, 2011.
  • [44] R. Nayak, T. Dora, P. A. Satapathy, A computational and experimental investigation on thermal conductivity of particle reinforced epoxy composites, Computational Materials Science 48 (2010) 576.
  • [45] J. Flaquer, A. Rios, A. Martin-Meizoso, S. Nogales, H. Böhm, Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites, Computational Materials Science 41 (2007) 156.
  • [46] Ganapathy, K. Singh, P. E. Phelan, R. Prasher, An effective unit cell approach to compute the thermal conductivity of composites with cylindrical particles, J. Heat Transfer 127 (2005) 553.
  • [47] K. Sebeck, C. Shao, J. Kieffer, Structure, thermal, and mechanical properties of interfaces in pmc: A molecular simulation study, in: Proc. 18th International Conf. on Composite Materials, Jeju Island, Korea, 2011.
  • [48] T. C. Clancy, S. J. V. Frankland, J. A. Hinkley.: Prediction of Material Properties of Nanostructured Polymer Composites Using Atomistic Simulations, American Institute of Aeronautics and Astronautics, 2009.
  • [49] X. Huang, X. Huai, S. Liang, X.Wang, Thermal transport in si/ge nanocomposites, J. Phys. D: Appl. Phys. 42 (2009) 9, 095416.
  • [50] Y. Zhou, B. Anglin, A. Strachan, Phonon thermal conductivity in nanolaminated composite metals via molecular dynamics, J. Chem. Phys. 127 (2007) 184702.
  • [51] G. Granqvist, O. Hunderi, Conductivity of inhomogeneous materials: Effective-medium theory with dipole-dipole interaction, Phys. Rev. B 18 (4) (1978) 1554.
  • [52] G. Granqvist, O. Hunderi, Optical properties of ag-si02 cermet films: A comparison of effective-medium theories, Phys. Rev. B 18 (6) (1978) 2897.
  • [53] Y. Benveniste, T. Miloh, An exact solution for the effective thermal conductivity of cracked bodies with oriented elliptical cracks, J. Appl. Phys. 66 (1989) 176.
  • [54] Y. Benveniste, T. Chen, G. J. Dvorak., The effective thermal conductivity of composites reinforced by coated cylindrically orthotropic fibers, J. Appl. Phys. 67 (1990) 2878.
  • [55] Y. Benveniste, T. Miloh, On the effective thermal conductivity of coated short fiber composites, J. Appl. Phys. 69 (1991) 1337.
  • [56] J. D. Felske, Effective thermal conductivity of composite spheres in a continuous medium with contact resistance, International Journal of Heat and Mass Transfer 47 (2004) 3453.
  • [57] M. L. Dunn, M. Taya, The effective thermal conductivity of composites with coated reinforcement and the application to imperfect interfaces, J. Appl. Phys. 73 (1993) 1711.
  • [58] S. Lu, J. Song, Effective conductivity of composites with spherical inclusions: Effect of coating and detachment, J. Appl. Phys. 79 (1996) 609.
  • [59] D. P. H. Hasselman, K. Y. Donaldson, J. R. T. Jr, Effective thermal conductivity of uniaxial composite with cylindrically orthotropic carbon fibers and interfacial thermal barrier, J. Comp. Mater. 27 (6) (1993) 637.
  • [60] C.-W. Nan, R. Birringer, D. R. Clarke, H. Gleiter., Effective thermal conductivity of particulate composites with interfacial thermal resistance, J. Appl. Phys. 81 (1997) 6692.
  • [61] J. Ordonez-Miranda, R. Yang, J. J. Alvarado-Gil, A model for the effective thermal conductivity of metal-nonmetal particulate composites, J. Appl. Phys. 111 (2012) 044319.
  • [62] Y. Agari, A. Ueda, M. Tanaka, S. Nagai, Thermal conductivity of a polymer filled with particles in the wide range from low to super-high volume content, Journal of Applied Polymer Science 40 (1990) 929.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-615b0864-f33d-4a24-9e09-58bf454293ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.