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1. Introduction

In Astronautics, Aeronautics, Communications and other fields, 
there are many high reliable systems. Therefore, how to estimate the 
reliability of system has become a very significant effort to assess the 
reliability of critical systems to mitigate the probability of system fail-
ure and improve safety environment. Particularly, some systems may 
experience multiple degradation paths and they are either independent 
or dependent. When they are dependent, predicting system reliability 
becomes a challenging problem.

In the available literature, extensive research has been devoted 
to estimate reliability of systems/products experiencing bivariate or 
multivariate degradation data. Crk [3] assumed the system failure 
is governed by several independent mechanisms and presented an 
effective way to estimate the system’s reliability by monitoring each 
performance characteristic. Wang and Coit [14] described a general 
modeling and analysis approach for reliability prediction based on 

degradation modeling, considering multiple degradation measures. 
Xu and Zhao [19] also considered this problem and introduced two 
methods to model and analyze systems with multiple degradation 
measures. First, they considered the correlation between the degra-
dation measure and the failure event by introducing a probabilistic 
measure, and then proposed a state-space model to describe the evo-
lution of the degradation process by incorporating both the degrada-
tion dynamics and random stress effects. Sari et al. [11] proposed a 
two-stage reliability model for bivariate degradation data. With the 
proposed model, not only the marginal reliability but also the system 
reliability can be assessed. The flexibility of the model to accommo-
date serial correlation of marginal degradation data, different mar-
ginal degradation distribution functions, and dependency between 
performance characteristics increases the probability to model and 
analyze the data more accurately compared with models with stricter 
assumptions. They analyzed the actual experiment data of the LED 
tube light system and gave some insights into the failure behavior 

Zhengqiang Pan
Jing Feng
Quan Sun

Lifetime Distribution and Associated Inference of Systems with 
Multiple Degradation Measurements Based on Gamma Processes

Wyznaczanie rozkładu czasów życia oraz wnioskowanie 
dla systemów wymagających pomiarów współistniejących 

degradacji w oparciu o procesy gamma
With development of science and technology, many engineering systems take on high reliable characteristic and usually have 
complex structure and failure mechanisms, with their reliability being evaluated by multiple degradation measurements. In cer-
tain physical situations, the degradation of these performance characteristics would be always positive and strictly increasing. 
Therefore, the gamma process is usually considered as a degradation process due to its independent and non-negative increments 
properties. In this paper, we suppose that a system has multiple dependent performance characteristics and that their degradation 
can be modeled by gamma processes. For such a multivariate degradation involving three or more performance characteristics, 
we propose to use a multivariate Birnbaum-Saunders distribution and its marginal distributions to approximate the reliability 
function and give the corresponding lifetime distribution. And then, the inferential method for the model parameters is developed. 
Finally, for an illustration of the proposed model and method, a simulated example is discussed and some computational results 
are presented.

Keywords:	 multiple degradation, lifetime distribution, gamma process, Birnbaum-Saunders distribution, 
MCMC method.
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of the LED lamps system. Barker and Newby [1] used a multivari-
ate Wiener process to describe the degradation of a complex multi-
component system, and then provide an optimal non-periodic in-
spection policy for it. Son and Savage [13] proposed a design stage 
method for assessing performance reliability of systems with mul-
tiple time-variant responses due to component degradation. They 
assume that the system component degradation profiles over time 
is known and the degradation of the system is related to component 
degradation using mechanistic models. The cumulative distribution 
function of time to soft failure has been determined incrementally 
by summing probabilities of unions of failure sets established from 
shifted limit-state surfaces over time. They also present a set-theory 
method for assessing systems reliability where failure events may be 
described by time-variant parallel and/or series systems [12].  Li et 
al. [5] discussed a reliability model of a series system with depend-
ent component degradation processes.  Mercier et al. [6] discussed 
a track geometry model based on the observation of two depend-
ent randomly increasing deterioration indicators through a bivariate 
gamma process constructed by trivariate reduction, and then give 
the intervention scheduling of a railway track. Pan and Balakrishnan 
[8] proposed a bivariate constant-stress accelerated degradation test 
model based on Wiener processes and Copulas. And the correspond-
ing copula parameter is a function of the stress level that can be 
described by logistic function. Particularly, it is worth mentioning 
that Zhou et al. [20] proposed a bivariate degradation model based 
on copulas when a product has two performance characteristics and 
they can be governed by gamma processes. Furthermore, Pan and 
Balakrishnan [9] introduced the reliability model for the degradation 
of products with two performance characteristics by assuming that 
the performance characteristics are governed by gamma processes. 
In that case, they used a bivariate Birnbaum-Saunders distribution 
and its marginal distributions to approximate the reliability of the 
product. Wang et al. [17] gave the reliability equations when typical 
degradation and shocks are involved. The failure modes included 
catastrophic failure, degradation and failure due to shocks. Further-
more, they constructed a system reliability model on competitive 
failure processes under fuzzy degradation data and evaluated the 
proposed model by multi-state system reliability theory [18]. Wang 
and Pham [15] proposed a dependent competing risk model for a 
deteriorating system subject to shock processes, and a maintenance 
model involving imperfect maintenance actions. They also develop 
a dependent competing risk model for systems subject to multi-
ple degradation processes and random shocks using time-varying 
copulas [16]. Peng et al. [10] presented a comprehensive Bayesian 
framework for the integration of multilevel heterogeneous data sets, 
including the pass-fail data, lifetime data and degradation data at 
different system levels, which gave a more practical tool for real 
engineering applications.

This paper extends the work of Pan and Balakrishnan [9] and as-
sumes that a system has multiple dependent performance characteris-
tics and that their degradation can be modeled by gamma processes. 
For such a multivariate degradation involving three or more perform-
ance characteristics, we propose to use a multivariate Birnbaum-Saun-
ders distribution and its marginal distributions to approximate the reli-
ability function and give the corresponding lifetime distribution.

The rest of the paper is organized as follows. In Section 2, the 
formulation of systems with multiple degradation measurements is 
given. In Section 3, the lifetime distribution and associated inference 
for such systems are presented. Section 4 discusses the estimation 
of model parameters. A simulated example is given to illustrate the 
model and method proposed in Section 5. Finally, some concluding 
remarks are made in Section 6.

2. Formulation of Systems with Multiple Degradation 
Measurements

2.1.	 Assumptions

(1) All the degradation paths of the systems are governed by gam-
ma processes. Let Gk(t) denotes the kth degradation path with shape 
parameter vk and scale parameter uk, where t ≥ 0, and Gk(0). Here, 
k = 1,⋯,K, and K is the number of the degradation paths. For a given  
t and ∆t,

	 ( )~ ( , )k k kG t Ga v t u∆∆

where ( ) ( ) ( )k k kG t G t t G t∆ = + ∆ − , and , ) ( k kGa v t u∆  is a gamma 
distribution with shape parameter vk∆t and scale parameter uk. The 
probability density function (PDF) of a random variable X having 
a gamma distribution with shape parameter v and scale parameter u 
can be given by:
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(2) The degradation paths are not pairwise independent and the 
dependence of all the degradation paths can be described by variance-
covariance matrix.

(3) All observations of the degradation paths are made at the same 
predetermined times (case of balanced data), and the measurement 
frequency is a constant denoted as ∆t.

(4) In the case of different predetermined measurement times of 
the degradation paths, the dependency can be ignored, that is, we can 

consider ( )1k jG t∆  and ( )2 'k jG t∆  to be independent, when ,  'j j≠

where k1 = 1,⋯,K, k2 = 1,⋯,K, j = 1,⋯,M, j' = 1,⋯,M.

2.2.	 Formulation of the Problem

For degradation paths involving independent nonnegative incre-
ments, gamma processes are more suitable for describing the dete-
rioration of the system. In the present work, we suppose that a sys-
tem has K degradation paths which are dependent each other and all 
the degradation paths are governed by gamma processes. For such 
a system, m measurements for all the paths are observed up to the 
termination time T, which results in degradation measurements  

1( ) ( ( ), , ( )) 'j j K jt G t G t=G   corresponding to time tj, 1, ,j M=   . In 
general, the multiple degradation data for this model can be presented 
in the form:
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For k = 1,⋯,K, let:

	  1 0( ) ( ) ( ), 0k j k j k jG t G t G t t−∆ = − =

For each degradation path, by the independent increment property 
of the gamma process, we have independent but non-identical random 
variables:

	 ( ) ( ) 1, ,    k j k k j jG t Ga v t u t t t −∆ ∼ ∆ ∆ = − .	 (1)

So, the PDF of ( )k jG t∆  is:
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(2)

with the corresponding mean and variance given by:

	 ( ) ( ) 2, Vark j k k k j k kE G t u v t G t u v t   ∆ = ∆ ∆ = ∆    .

The degradation increments of the paths, ( )k jG t∆  can be nor-
malized as:

	
( )k j k k
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k k

G t u v t
Y

v tu
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∆
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For ( )j 1 , ,j KjY Y=Y 
, it is known that they are i.i.d. vectors satis-

fying:

	 ( ) ( )0,    1kj kjE Y Var Y= = ,	 (4)

with correlation coefficient being:

	 corr Y corr G t G tYk j k j k j k j k k1 2 1 2 1 2
, ( , )( ) = ( ) ( ) =∆ ∆ ρ .	 (5)

For each path, we know that the distribution of the first passage 
time to its threshold value can be approximated by Birnbaum-Saun-
ders distribution [2]. Pan and Balakrishnan [9] gave the lifetime dis-
tribution of product with two dependent performance characteristics 
using bivariate Birnbaum-Saunders distribution. In the following sec-
tion, we will discuss the lifetime distribution and associated inference 
of systems with any K degradation paths, where 3K ≥ .

3. Lifetime Distribution and Associated Inference

Let Tk be the first passage times of kth degradation paths with 
the threshold values ωk, k = 1,⋯,K. Any path of the K degradation 
pathes exceeds its threshold value, the system fails. Therefore, the 
system’s reliability at time t can be expressed as:
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According to multidimensional central limit theorem and the 
property of covariance, (6) can be approximated by:
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and ΦK is the multivariate normal distribution of a K-dimensional ran-
dom vector. In terms of (4) and (5), Σ can be rewritten as:
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(7) can, therefore, be represented as:
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ωk

k ku
=

1
/
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[4] proposed a bivariate Birnbaum-Saunders distribution in their 
work. Here, we can extend their result to any -dimensional random 
vector (T1,T2,⋯,Tk), which have the multivariate Birnbaum-Saunders 
distribution, if the joint cumulative distribution function of (T1,T2,⋯,Tk) 
can be expressed as:
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According to (9), it is easy to obtain the lifetime distribution of 
T, F(t) =1− R(t), and we find that F(t) can be approximated by multi-
variate Birnbaum-Saunders distribution of a K-dimensional random 
vector and all its marginal distributions.
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According to (9), it can be expressed as:
 

	

R t U t t
k

K
k

k

K

k k

K

k k k( ) = − ( )( ) + ( )
= =

−

= +
( )∑ ∑ ∑1 0

1
1

1

1

1
2

1 2 1
1 2

Φ Φ ΣU , (; ,
11 2

1 01 1

, )

( , , ) ( , , )( ) ( ( ); , ).

k

K
K K KU t

( )
+ + −

 

Φ Σ (10)

Therefore, we can obtain the PDF of the lifetime of the system 
as follows:
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where: f tk k k; ,α β( )  , 1, ,k K=  , is the PDF of Birnbaum-Saun-

ders distribution given by:
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Furthermore, we can obtain:
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In terms of the property of multivariate normal distribution, the 
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and so:
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Similarly, for , ,1 l l K∀ < < , we obtain:
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According to (12) and (13), (11) can be rewritten as:

f t dR t
dt

f t

f t

kk
K

k k

kmk k
K

k
K

m

( ) = −

= ( )

−

=

== +=
−

∑

∑∑∑

( )

; ,1

1
2

11
1

2 11

α β

� ;; , ; ,, , ,α βk k k k
k

k k k k
k k

m m
m m mt( ) ( )( )

+ +

( )
−

( ) ( )
− −Φ1 1 2 1 2 1 2

U 





µµ ΣΣ

(( ) ( ; , ) ( ); ,( )
, , , ,− +

= − ( )
−

( )
−∑1 1

1 1 1 1
K

kk k k K K
k

K
K kf t tα β Φ U

 



µµ ΣΣ 11, , .
 K

k
( )
−( )

(14)

4. Estimation of Model Parameters

In this section, we discuss the estimation of the model parameters. 
The procedure consists of two steps. Firstly, we can estimate the cov-

ariance matrix Σ. Let , ∆ ∆ ∆G t G t G t j Mj j K j( ) = ( ) ( )( ) =1 1, , , , ,
'

   

be the multivariate degradation increment vector. According to (5) 

and (8), the estimator of , Σ Σ  can be obtained by ( )jt∆G . Its MLE 

for a sample of  observations is:
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its joint distribution can be approximated by multivariate normal dis-
tribution according to (6) and (7), and  follows gamma distribution 

with shape parameter kv t∆  and scale parameter . Thus, the log-likeli-
hood function based on measurements on the  K degradation paths is 
given by:
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K j Kj k k jj j k jL Y Y g G t
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(16)

From (16), we observe that the model is quite complicated from a 
computational viewpoint. For this reason, we make use of the Baye-
sian MCMC method for estimating the model parameters. In most 
practical applications in which Bayesian approach is used, it is dif-
ficult to compute analytically the posterior distribution. The MCMC 
method can be used to generate a sample from the posterior distribu-
tion large enough based on a Markov Chain so that any desired fea-
ture of the posterior distribution can be accurately estimated. Here, we 
assume that the prior distributions of all the unknown parameters are 
non-informative and we then utilize Matlab MCMC toolbox to imple-
ment the Metropolis-Hastings sampling after which we can estimate 
the model parameters of interest.

5. Simulated Example

To illustrate the model and inference method proposed in the pre-
ceding sections, we give a simulated example in this section. Firstly, 
the algorithm to simulate the data for multiple degradation measure-
ments based on gamma processes is presented. And then, the estima-
tion of the model parameters will be obtained according to the proce-
dure in section 4.

5.1.	 Simulation of Data

Recently, copulas have become popular in simulation models. 
Copulas are functions that describe dependencies among variables, 
and provide a way to create distributions to model correlated multi-
variate data. About the details of copula function, please see the book 
written by Nelsen [7]. Using a copula, a data analyst can construct a 
multivariate distribution by specifying marginal univariate distribu-
tions, and choosing a particular copula to provide a correlation struc-
ture between variables. Bivariate distributions, as well as distributions 
in higher dimensions, are possible. To simulate dependent multivari-
ate data using a copula, we have seen that we need to specify the 
copula family (we use Gaussian copula here), the rank correlations 
among variables, and the marginal distributions for each variable.

In this simulated example, we assume that a system with three 
degradation paths and the corresponding simulation parameters are 
denoted as , where  and  are the shape and scale parameters of gamma 
distributions, respectively, and  is the kendall’s tau which describes 
the rank correlations among the three degradation paths. There is a 
simple 1-1 mapping between Kendall’s tau and the linear correlation 
coefficient:

	 ( ) ( ) ( )2 / / 2 .arcsin or sinτ π τ π= × = ×Σ Σ 	 (17)

Suppose that (tj ),1 ≤ j ≤ 500 time increments   are random cho-
sen with similar magnitude as the data of system degradation. 
Let v = (0.04,0.05,0.06), u=(0.05,0.04,0.025) and τ = (1,0.6,0.4; 
0.6,1,0.3; 0.4,0.3,1). According to (17), it is easy to know that Σ
=(1,0.8090,0.5878; 0.8090,1,0.4540; 0.5878,0.4540,1), and let 
ρ=(0.8090,0.5878,0.4540). Then, 500 values of degradation measure-
ments can be simulated according to the following procedure.

specify the copula family as Gaussian copula with parameters (1)	
(0,Σ);
the rank correlations among the triple degradation paths are (2)	 τ;
the marginal distribution of the increments for (3)	 ith degradation 
path is gamma distribution with parameters (vi, ui), i=1,2,3.

Therefore, the correlated multivariate data ∆G that we need can 
be generated by Matlab as follows. And then, the triple simulated deg-
radation paths are obtained easily.

Z=mvnrnd([0,0,0],Σ,500);
U=normcdf(Z,0,1);
∆G=[gaminv(U(:,1),v(1),u(1) ),gaminv(U(:,2),v(2),u(2) ),gaminv(U(:,3),v(3),u(3))]
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5.2.	 Estimation of Parameters

According to the model parameters settings above, we generate 
500 data sets to validate the model and method proposed. The param-
eters are estimated by using Matlab MCMC toolbox. For each group 
data, 5000 realizations of the parameters are from the posterior, and 
the last 4000 are used for estimation of the parameters. Therefore, 
we can obtain 500 groups estimated parameters. Figure 1 gives the 
hist graphs of the estimated parameters. And then, the mean, standard 

deviation, root mean squared error (RMSE) of the parameters can be 
obtained and listed in Table 1.

From Table 1, it is seen that the estimated parameters are very 
close to their true values. And it also reveals that RMSE of all the pa-
rameters are quite small. We, therefore, feel that the proposed model 
as well as the corresponding inferential method are performing very 
well, in this case.

Based on the estimates in Table 1, the reliability function and 
the corresponding PDF can be computed from (10) and (14) when 
K = 3. The corresponding plots are illustrated in Figures 2 and 3, 
respectively.

6. Concluding Remark

The work of this paper is the extension of the results of Pan and 
Balakrishnan [9] that discussed the reliability model of bivariate deg-
radation of products. We have introduced the lifetime distribution and 
associated inferential method of systems with multiple degradation 
measurements by assuming that all the degradation paths are governed 
by gamma processes. In this situation, we extend the work of Kundu 
et al. [4] and use a multivariate Birnbaum-Saunders distribution and 
its marginal distributions to approximate the reliability of the system. 
The inference of the model parameters is quite involved due to the 
complex form of the model and for this reason we used the Bayesian 
MCMC method for making inference. From the example in Section 5, 
we find that the proposed model as well as the inferential method for 
the model parameters work well.
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Table 1.	 Model parameter estimation results

Parameters
Results

True value
mean std RMSE

v(1) 0.0401 1.7345e−3 1.7381e−3 0.0400

v(2) 0.0500 2.2582e−3 2.2582e−3 0.0500

v(3) 0.0601 2.5248e−3 2.5277e−3 0.0600

u(1) 0.0536 0.0121 0.0126 0.0500

u(2) 0.0426 8.8039e−3 9.1847e−3 0.0400

u(3) 0.0265 4.8775e−3 5.0939e−3 0.0250

ρ(1) 0.8076 0.0168 0.0169 0.8090

ρ(2) 0.5879 0.0309 0.0309 0.5878

ρ(3) 0.4530 0.0367 0.0367 0.4540

Fig. 1. The hist graphs of the estimated parameters

Fig. 3. The PDF of lifetime of the system

Fig. 2. The reliability of the system
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