Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The increasing presence of silver nanoparticles (AgNPs) in consumer products and their subsequent release into the environment raises concerns about their impact on soil and water systems. The present study investigates the interactions between silver nanoparticles and silver ions with organicmuck soil, with particular focus on their adsorption and retention mechanisms. Key physicochemical properties of the soil, including cation exchange capacity (CEC), specific surface area, and pH, were characterised to determine their influence on the behaviour of silver species. Adsorption experiments indicated that Ag+ ions were adsorbed more efficiently than AgNPs, with maximum adsorption capacities of 11.25 mg/g and 7.00 mg/g, respectively. The adsorption isotherms for both Ag+ and AgNPs fit the Freundlich model better than the Langmuir model, suggesting the presence of heterogeneous adsorption sites. Kinetic studies indicate that adsorption follows a pseudo-second-order model, implying chemisorption controlled by chemical interactions between silver species and the soil surface. Sequential extraction of silver species reveals that Ag+is more easily desorbed, while AgNPs are more tightly bound. These results highlight the environmental implications of silver nanoparticle contamination in soils and contribute to the understanding of the factors influencing the mobility and retention of silver in terrestrial ecosystems.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
77--98
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Institute of Environmental Engineering of the Polish Academy of Sciences, Zabrze, Poland
Bibliografia
- 1. Act on fertilizers and fertilization of 10 July 2007 (Polish Journal of Laws from 2007 item 625).
- 2. Bae, S., Hwang, Y.S., Lee, Y.J., Lee, S.K., (2013). Effects of water chemistry on aggregation and soil adsorption of silver nanoparticles. Environmental Analysis Health and Toxicology, no. 28, pp. 1–4. https://doi.org/10.5620/eht.2013.28.e2013006
- 3. Benn, T.M., Westerhoff, P., (2008). Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science and Technology Journal, no. 42, pp. 4133–4139. https://doi.org/10.1021/es7032718
- 4. Benoit, R., Wilkinson, K.J., Sauvé, S., (2013). Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles. Chemistry Central Journal, no. 7, pp. 1–7. https://doi.org/10.1186/1752-153X-7-75
- 5. Coutris, C., Joner, E.J., Oughton, D.H., (2012). Aging and soil organic matter content affect the fate of silver nanoparticles in soil. Science of the Total Environment, no. 420, pp. 327–333. https://doi.org/10.1016/j.scitotenv.2012.01.027
- 6. Dhaka, A., Mali, C.S., Sharma, S., Trivedi, R., (2023). A review on biological synthesis of silver nanoparticles and their potential applications. Results in Chemistry, no. 101108. https://doi.org/10.1016/j.rechem.2023.101108
- 7. Dubinin, M.M., (1960). The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chemical Reviews, no. 60, pp. 235–241. https://doi.org/10.1021/cr60204a006
- 8. Freundlich, H.M.F., (1906). Over the adsorption in solution. Journal of Physical Chemistry, no. 57, pp. 385–471.
- 9. Galatage, S.T., Hebalkar, A.S., Gote, R.V., Mali, O. R., Killedar, S.G., (2020). Silver nano particles by green synthesis: an overview. Research Journal of Pharmacy and Technology, no. 3, pp. 1503–1510. https://doi.org/10.5958/0974-360X.2020.00274.7
- 10. Geranio, L., Heuberger, M., Nowack, B., (2009). The behaviour of silver nanotextiles during washing. Environmental Science and Technology Journal, no. 43, pp. 8113–8118. https://doi.org/10.1021/es9018332
- 11. Harrison, D.M., Briffa, S.M., Mazzonello, A., Valsami-Jones, E., (2023). A review of the aquatic environmental transformations of engineered nanomaterials. Nanomaterials, no. 13. https://doi.org/10.3390/nano13142098
- 12. Hedberg, J., Oromieh, A.G., Kleja, D.B., Wallinder, I.O., (2015). Sorption and dissolution of bare and coated silver nanoparticles in soil suspensions – Influence of soil and particle characteristics. ournal of Environmental Science and Health, Part A, no. 50, pp. 891–900. https://doi.org/10.1080/10934529.2015.1030271
- 13. Hoppe, M., Mikutta, R., Utermann, J., Duijnisveld, W., Guggenberger, G., (2014). Retention of sterically and electrosterically stabilized silver nanoparticles in soils. Environmental science and technology, no. 48, pp. 12628–12635. https://doi.org/10.1021/es5026189
- 14. Klitzke, S., Metreveli, G., Peters, A., Schaumann, G.E., Lang, F., (2015). The fate of silver nanoparticles in soil solution – Sorption of solutes and aggregation. Science of the Total Environment, no. 535, pp. 54–60. https://doi.org/10.1016/j.scitotenv.2014.10.108
- 15. Kyziol-Komosinska, J., Dzieniszewska, A., Franus, W., Rzepa, G., (2020). Behaviour of Ag species in presence of aquatic sediment minerals – In context of aquatic environmental safety. Journal of Contaminant Hydrology, no. 232, pp. 1–12. https://doi.org/10.1016/j.jconhyd.2020.103606
- 16. Kyzioł-Komosinska, J., Kukułka, L., (2008). Wykorzystanie kopalin towarzyszących pokładom złóż węgli brunatnych do usuwania metali ciężkich z wód i ścieków, Zabrze. Prace i Studia Instytutu Podstaw Inżynierii Środowiska PAN w Zabrzu.
- 17. Kyzioł-Komosińska, J., Baran, A., Rosik-Dulewska, C., Czupiol, J., Boncel, S., Dzieniszewska, A., (2016). Impact of different washing conditions on the release of ag species from textiles. Journal of Civil and Environmental Engineering, no. 3, pp. 1–11. https://doi.org/10.4172/2165-784X.1000234
- 18. Langmuir, I., (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, no. 38, pp. 2221–2295. https://doi.org/10.1021/ja02268a002
- 19. Li, M., Greenfield, B.K., Nunes, L.M., Dang, F., Liu, H.L., Zhou, D.M., Yin, B., (2019). High retention of silver sulfide nanoparticles in natural soils. Journal of Hazardous Materials, no. 378, 120735. https://doi.org/10.1016/j.jhazmat.2019.06.012
- 20. Naghdi, M., Metahni, S., Ouarda, Y., Brar, S.K, Das, R.K, Cledon, M., (2017). Instrumental approach toward understanding nano-pollutants. Nanotechnology for Environmental Engineering, no. 3. https://doi.org/10.1007/s41204-017-0015-x
- 21. Nie, P., Zhao, Y., Xu, H., (2023). Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. Ecotoxicology and Environmental Safety, no. e114636. https://doi.org/10.1016/j.ecoenv.2023.114636
- 22. Pulit-Prociak, J., Banach, M., (2016). Silver nanoparticles – a material of the future…? Open Chemistry, no. 1, pp. 76–91. https://doi.org/10.1515/chem-2016-0005
- 23. Revellame, E.D, Fortela, D.L, Sharp, W., Hernandez, R., Zappi, M.E., (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, no. 100032. https://doi.org/10.1016/j.clet.2020.100032
- 24. Shannon, R.D., (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Crystallographica Section A, no. 32, pp. 751–767.
- 25. Thakur, A., Kathpalia, R., (2022). Engineered nanoparticles (ENPs): Unexplored potential and limitations. Indian Journal of Biochemistry and Biophysics, no. 12. https://doi.org/10.56042/ijbb.v59i12.67304
- 26. The Woodrow Wilson Database www.wilsoncenter.org. [24.06.2024]
- 27. Torrent, L., Marguí, E., Queralt, I., Hidalgo, M., Iglesias, M., (2019). Interaction of silver nanoparticles with Mediterranean agricultural soils: Lab-controlled adsorption and desorption studies. Journal of Environmental Sciences, no. 83, pp. 205–216. https://doi.org/10.1016/j.jes.2019.03.018
- 28. Tugulea, A.M., Bérubé, D., Giddings, M., Lemieux, F., Hnatiw, J., Priem, J., Avramescu, M.L., (2014). Nano-silver in drinking water and drinking water sources: Stability and influences on disinfection by-product formation. Environmental Science and Pollution Research, no. 21, pp. 11823–11831. https://doi.org/10.1007/s11356-014-2508-5
- 29. Wang, R., Du H., Wang, Y., Wang, D., Sun, Q., Zhou, D., (2018). Retention of silver nanoparticles and silver ion to natural soils: Effects of soil physicochemical properties. Journal of Soils and Sediments, no. 18, pp. 2491–2499. https://doi.org/10.1007/s11368-018-1918-2
- 30. Wang, R., Du, H., Wang, Y., Wang, D., Sun, Q., Zhou, D., (2018). Retention of silver nanoparticles and silver ion to natural soils: effects of soil physicochemical properties. Journal of Soils and Sediments, no. 18, pp. 2491–2499. https://doi.org/10.1007/s11368-018-1918-2
- 31. www.imarcgroup.com/silver-nanoparticles-market. [23.06.2024]
- 32. www.nanodb.dk. [10.03.2025]
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61532740-9629-4091-b3f2-6d77d75cf9ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.