PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of Rectangular Tank Cross-Section Using Trust Region Gradient Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Optymalizacja przekroju prostokątnego zbiornika z wykorzystaniem gradientowej metody obszaru zaufania
Konferencja
9th World Multidisciplinary Congress on Civil Engineering, Architecture, and Urban Planning - WMCCAU 2024 : 2-6.09.2024
Języki publikacji
EN
Abstrakty
EN
In various industries, rectangular tanks are commonly used for storing liquids and other materials. The design and optimization of these tanks are crucial for ensuring structural integrity and material efficiency. Traditional designs often utilize constant wall thickness, which does not align optimally with the stress distribution, leading to potential overuse of materials and increased costs. Recent studies have shown that tanks with variable wall thickness, such as trapezoidal cross-sections, can better match stress distributions, particularly under hydrostatic loads, resulting in more efficient use of materials. This research aims to build upon previous studies by introducing an advanced optimization algorithm based on the Trust Region Gradient Method to further refine the cross-sectional design of rectangular tanks. The primary objective is to minimize the material usage while maintaining structural safety and performance under various load conditions, including hydrostatic pressure and thermal effects. The proposed algorithm iteratively adjusts the tank's wall thickness, seeking an optimal configuration that reduces bending moments and material costs. Initial static calculations is verified using the finite difference method, emphasizing energy minimization conditions for elastic strain in bent plates on elastic foundations. This approach is compared with traditional discretization methods to validate accuracy. The trust region method is then applied to optimize the design, with a focus on achieving a balance between structural integrity and economic feasibility. Preliminary results indicate that the trust region gradient method can significantly enhance the design process, leading to substantial material savings and improved structural performance. The algorithm's effectiveness is demonstrated through case studies comparing tanks with constant and variable wall thickness. This research contributes to sustainable construction practices by promoting designs that use materials more efficiently and meet safety standards.
Rocznik
Strony
art. no. 99
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • Department of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland
  • Department of Construction and Geoengineering, Poznan University of Life Sciences, Piątkowska 94E, 60-649 Poznań, Poland
  • Department of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland
Bibliografia
  • 1. I. Laks, Z. Walczak and N. Walczak, “Fuzzy analytical hierarchy process methods in changing the damming level of a small hydropower plant: Case study of Rosko SHP in Poland”, Water Resour. Ind., 29, 100204 (2023). doi: 10.1016/j.wri.2023.100204.
  • 2. I. Laks and Z. Walczak, “Efficiency of Polder Modernization for Flood Protection. Case Study of Golina Polder (Poland)”, Sustainability, 12, 8056 (2020). doi: 10.3390/su12198056.
  • 3. J. Ziólko, J. “Zbiorniki, silosy”, in Poradnik projektanta konstrukcji metalowych: Tom II, edited by W. Bogucki (Arkady, Warszawa, 1983).
  • 4. J. Ziółko, Zbiorniki metalowe na ciecze i gazy (Arkady, Warszawa, 1986).
  • 5. P. Horajski, L. Bohdal, L. Kukielka, R. Patyk, P. Kaldunski, and S. Legutko, “Advanced Structural and Technological Method of Reducing Distortion in Thin-Walled Welded Structures”, Materials 14, 504 (2021). doi: 10.3390/ma14030504.
  • 6. W. Buczkowski, H. Mikołajczak and A. Szymczak-Graczyk, “Przykładowa ocena rozwiązań materiałowokonstrukcyjnych zbiorników cylindrycznych z żywic poliestrowo-szklanych stosowanych w przydomowych oczyszczalniach ścieków”, Gaz, Woda i Technika Sanitarna, 12, 25-28 (2005).
  • 7. A. Halicka and D. Franczak, Projektowanie zbiorników żelbetowych. Tom 1. Zbiorniki na materiały sypkie (Wydawnictwo Naukowe PWN. Warszawa 2011).
  • 8. A. Halicka and D. Franczak, Projektowanie zbiorników żelbetowych. Tom 2. Zbiorniki na ciecze (Wydawnictwo Naukowe PWN, Warszawa 2014).
  • 9. M. Sybis and E. Konował, “Influence of Modified Starch Admixtures on Selected Physicochemical Properties of Cement Composites”, Materials, 21, 7604 (2022). doi: 10.3390/ma15217604.
  • 10. M. Sybis, E. Konował and K. Prochaska, “Dextrins as green and biodegradable modifiers of physicochemical properties of cement composites”, Energies, 11, 4115 (2022). doi: 10.3390/en15114115.
  • 11. W. Buczkowski, A. Szymczak-Graczyk and Z. Walczak, “Experimental validation of numerical static calculations for a monolithic rectangular tank with walls of trapezoidal cross-section”, Bull. Pol. Acad. Sci. Tech. Sci. 65, 799–804 (2017). doi:10.1515/bpasts-2017-0088.
  • 12. A. Szymczak-Graczyk, “Numerical Analysis of the Bottom Thickness of Closed Rectangular Tanks Used as Pontoons”. Appl. Sci., 10 (22), 8082 (2020). doi:10.3390/app10228082.
  • 13. A. Szymczak-Graczyk, “Floating platforms made of monolithic closed rectangular tanks”. Bull. Pol. Acad. Sci. Tech. Sci., 66, 209–219 (2018). doi:10.24425/122101.
  • 14. W. Buczkowski and A. Szymczak-Graczyk, “Monolityczne zbiorniki prostopadłościenne obciążone temperaturą”, Przegląd Budowlany, 9, 24-29 (2020).
  • 15. W. Buczkowski, “On reinforcement of temperature loaded rectangular slabs”. Arch. Civ. Eng., 54 (2), 315-331 (2008).
  • 16. W. Buczkowski, S. Czajka and T. Pawlak, “Analiza pracy statycznej zbiornika prostopadłościennego poddanego działaniu temperatury”, Acta Sci. Pol., Archit., 5 (2), 17-29 (2006).
  • 17. A. Szymczak-Graczyk, “Rectangular plates of a trapezoidal cross-section subjected to thermal load”, IOP Conf. Ser. Mater. Sci. Eng., 603, 032095 (2019). doi:10.1088/1757-899X/603/3/032095.
  • 18. Z. Kączkowski, Plates. Static Calculations (Arkady, Warszawa, Poland, 2000).
  • 19. L. H. Donnell, Beams, Plates and Shells (McGraw-Hill, New York, NY, USA, 1976).
  • 20. P. M. Naghdi, The Theory of Shells and Plates (Handbuch der Physick, Berlin, Germany, 1972).
  • 21. V. Panc, Theries of Elastic Plates (Academia: Prague, Czech Republic, 1975).
  • 22. S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Coatings (Arkady, Warszawa, Poland, 1962).
  • 23. R. Szlilard, Theory and Analysis of Plates. Classical and Numerical Methods (Prentice Hall, Englewood Cliffs: Bergen, NJ, USA; Prentice-Hall: Upper Saddle River, NJ, USA, 1974).
  • 24. A. C. Ugural, Stresses in Plates and Shells (McGraw-Hill: New York, NY, USA, 1981).
  • 25. M. Son, H. Sang Jung, H. Hee Yoon, D. Sung and J. Suck Kim, “Numerical Study on Scale Effect of Repetitive Plate-Loading”, Test. Appl. Sci., 9, 4442 (2019). doi:10.3390/app9204442-19.
  • 26. B. E. Rapp, “Finite Difference Method”, in Microfluidics: Modelling, Mechanics and Mathematics, Micro and Nano Technologies, edited by B. E. Rapp (Elsevier, Amsterdam, The Netherlands, 2017), pp. 623–631. doi:10.1016/B978-1-4557-3141-1.50030-7.
  • 27. J. Blazek, “Principles of Solution of the Governing Equations”, in Computational Fluid Dynamics: Principles and Applications, edited by J. Blazek (Elsevier, Amsterdam, The Netherlands, 2015), pp. 29–72. doi:10.1016/B978-0-08-099995-1.00003-8.
  • 28. M. H. Sadd, “Formulation and Solution Strategies”, in Elasticity, Theory, Applications, and Numerics, edited by M. H. Sadd (Academic Press, Elsevier, Cambridge, Massachusetts, USA, 2005), pp. 83–102. doi:10.1016/B978-012605811-6/50006-3.
  • 29. K. S. Numayr, R. H. Haddad and M. A. Haddad, “Free vibration of composite plates using the finite difference method”, Thin-Walled Struct., 42, 399–414 (2004). doi:10.1016/j.tws.2003.07.001.
  • 30. A. Szymczak-Graczyk, “Numerical analysis of the impact of thermal spray insulation solutions on floor loading”, Appl. Sci., 10(3), 1016 (2020). doi: 10.3390/app10031016.
  • 31. W. Buczkowski and A. Szymczak-Graczyk “Wpływ różnej grubości i konstrukcji ścian na pracę statyczną monolitycznych zbiorników prostopadłościennych”, Acta Sci. Pol., Archit., 7(3) (2008), pp. 23-34
  • 32. N. Staszak, T. Garbowski and A. Szymczak-Graczyk, “Solid Truss to Shell Numerical Homogenization of Prefabricated Composite Slabs”, Materials 14, 4120 (2021). doi: 10.3390/ma14154120.
  • 33. N. Staszak, A. Szymczak-Graczyk and T. Garbowski, “Elastic Analysis of Three-Layer Concrete Slab Based on Numerical Homogenization with an Analytical Shear Correction Factor”, Appl. Sci., 12, 9918 (2022). doi: 10.3390/app12199918.
  • 34. N. Staszak, T. Garbowski and B. Ksit, “Optimal Design of Bubble Deck Concrete Slabs: Sensitivity Analysis and Numerical Homogenization”, Materials, 16, 2320 (2023). doi: 10.3390/ma16062320.
  • 35. N. Staszak, T. Garbowski and B. Ksit, “Application of the generalized nonlinear constitutive law in numerical analysis of hollow-core slabs”, Arch. Civ. Eng., 68 (2) (2022), pp. 125-145. doi: 10.24425/ace.2022.140633.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-614d3c87-63dc-498f-ae89-e7a4d2b4eaaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.