PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Production of indole acetic acid by endophytic Bacillus strains

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Produkcja kwasu indolilooctowego przez endofityczne szczepy Bacillus
Języki publikacji
EN
Abstrakty
EN
The objectives of this study were to isolate and characterize endophytic bacteria from sugar beet roots focusing on their ability to produce indole acetic acid (IAA). In order to isolate endophytic bacteria the sugar beet roots were used. To determine the amounts of IAA produced by endophytic Bacillus strains (B. amyloliquefaciens, B. megaterium and B. subtilis), a colorimetric technique was applied with Salkowski reagent. The isolates were grown in Laurin Broth medium supplemented with L-tryptophan over the concentration range of 100–10000 g/cm3 and incubated at 30 oC for 7 days. The highest concentration of IAA was recorded after 4 days of culturing in the supernatant obtained from the media containing 10000 g/cm3 of tryptophan. For the strain B. subtilis and B. megaterium the concentration of IAA marked in the post –culturing liquid amounted about 82.00 g/cm3, and for the B. amyloliquefaciens strain it amounted over 121.28 g/cm3. The strains Bacillus under study produced IAA in a different amount in the presence of L-tryptophan and in its absence.
PL
Celem pracy było wyizolowanie i scharakteryzowanie bakterii endofitycznych korzeni buraka cukrowego pod kątem ich zdolności do produkcji kwasu indolilooctowego (IAA). Materiał doświadczalny do izolacji bakterii endofitycznych stanowiły korzenie burak cukrowego. Ilość wytworzonego IAA przez endofityczne szczepy Bacillus (B. amyloliquefaciens, B. megaterium, B. subtilis) oznaczono metodą kolorymetryczną z odczynnikiem Salkowskiego. Szczepy hodowano w pożywce LB (Laurin Broth) suplementowanej L-tryptofanem w stężeniach 100–10000 g/cm3 i inkubowano w 30 oC przez 7 dni. Najwyższe stężenie IAA odnotowano po 4 dniach w hodowlach zawierających 10000 g/cm3 L-tryptofanu. Dla szczepu B. subtilis i B. megaterium stężenie IAA wynosiło około 82,00 g/cm3, a dla szczepu B. amyloliquefaciens 127,28 g/cm3. Badane szczepy Bacillus spp. wytwarzały IAA na różnym poziomie zarówno w obecności L-tryptofanu jak i przy jego braku.
Słowa kluczowe
Rocznik
Strony
93--105
Opis fizyczny
Bibliogr. 29 poz., wykr., tab.
Twórcy
  • Independent Chair of Biotechnology and Molecular Biology, University of Opole, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone: +48 77 401 60 56
Bibliografia
  • [1] Pinski A, Betekhtin A, Hupert-Kocurek K, Mur LAJ, Hasterok R. Defining the Genetic Basis of Plant – Endophytic Bacteria Interactions. Int J Mol Sci. 2019;20(8):1947. DOI: 10.3390/ijms20081947.
  • [2] Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, Van der Lelie D. Endophytic Bacteria and their Potential Application to Improve the Phytoremediation of Contaminated Environments. Biotechnol Genet Eng Rev. 2006;23:175-207. DOI: 10.1080/02648725.2006.10648084.
  • [3] Pawlik M, Płociniczak T, Piotrowska-Seget Z. Bakterie endofityczne i ich znaczenie w mikrobiologii środowiskowej, medycynie i przemyśle (Endophytic bacteria and their role in environmental microbiology, medicine and industry). Post Mikrobiol. 2015;54(2):115-122. http://www.pm.microbiology.pl/web/archiwum/vol5422015115.pdf.
  • [4] Gouda S, Das G, Sen KS, Shin HS, Patra KJ. Endophytes: A Treasure House of Bioactive Compounds of Medicinal Importance. Front Microbiol. 2016;7:1538. DOI: 10.3389/fmicb.2016.01538.
  • [5] Nabrdalik M, Moliszewska E. Wykorzystanie antagonistycznych właściwości Bacillus subtilis wobec Rhizoctonia solani (Application of antagonistic properties of Bacillus subtilis against Rhizoctonia solani). Proc ECOpole. 2017;11(1):231-240. DOI: 10.2429/proc.2017.11(1)025.
  • [6] Overvoorde P, Fukaki H, Beeckman T. Auxin Control of Root Development. Cold Spring Harb Perspect Biol. 2010;2:a001537. DOI: 10.1101/cshperspect.a001537.
  • [7] Glick BR. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica. 2012;1-15. http://dx/doi.org/10.6064/2012/963401.
  • [8] Li J, Ovakim DH, Charles TC, Glick BR. An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol. 2000;41:101-105. DOI: 10.1007/s002840010101.
  • [9] Patten CL, Glick BR. Role of Pseudomonas putida Indoleacetic Acid in Development of the Host Plant Root System. Appl Environ Microbiol. 2002;68:3795-3801. DOI: 10.1128/AEM.68.8.3795-3801.2002.
  • [10] Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM.Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Front Microbiol.2017;8:2552. DOI: 10.3389/fmicb.2017.02552.
  • [11] Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev. 2007;31:425-448. DOI: 10.1111/j.1574-6976.2007.00072.x.
  • [12] Duca D, Lorv J, Patten CL, Rose D, Glick BR. Indole-3-acetic acid in plant–microbe interactions. Antonie van Leeuwenhoek. 2014;106:85-125. DOI: 10.1007/s10482-013-0095-y.
  • [13] Camerini S, Senatore B, Lonardo E, Imperlini E, Bianco C, Moschetti G, Rotino GL, Campion B, Defez R. Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch Microbiol. 2008;190:67-77. DOI: 10.1007/s00203-008-0365-7.
  • [14] Cho KM, Hong SY, Lee SM, Kim YH, Kahng GG, Lim YP, Kim H, Yun HD. Endophytic Bacterial Communities in Ginseng and their Antifungal Activity Against Pathogens. Microbial Ecol. 2007;54(2):341-351. DOI: 10.1007/s00248-007-9208-3.
  • [15] Fouda AH, Hassan SED, Eid AM, Ewais EED. Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Annals AgricultSci. 2015;60(1):95-104. https://doi.org/10.1016/j.aoas.2015.04.001.
  • [16] Arruda L, Beneduzi A, Martins A, Lisboa B, Lopes C, Bertolo F, Passaglia LMP, Vargas LK. Screening of rhizobacteria isolated from maize (Zea mays L.) in Rio Grande do Sul State (South Brazil) and analysis of their potential to improve plant growth. Appl Soil Ecol. 2013;63:15-22. http://dx.doi.org/10.1016/j.apsoil.2012.09.001.
  • [17] Donate-Correa J, Leon-Barrios M, Perez-Galdona R. Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil. 2005;266:261-272. DOI: 10.1007/s11104-005-0754-5.
  • [18] Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J, Al-Harrasi A, Lee IJ. Indole acetic acid and ACC deaminase fromendophytic bacteria improves the growth of Solanum lycopersicum. Electronic J Biotechnol. 2016;21:58-64. http://dx.doi.org/10.1016/j.ejbt.2016.02.001.
  • [19] Ahmad Z, Wu J, Chen L, Dong W. Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Sci Rep. 2017;7(1):1777. DOI: 10.1038/s41598-017-01940-9.
  • [20] Ren JH, Li H, Wang YF, Ye JR, Yan AQ, Wu XQ. Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker. Biological Control. 2013;67(3):421-430. DOI: 10.1016/j.biocontrol.2013.09.012.
  • [21] Collins DP, Jacobsen BJ. Optimizing a Bacillus subtilis isolate for biological control of sugar beet cercospora leaf spot. Biological Control. 2003;26(2):153-161. DOI: 10.1016/s1049-9644(02)00132-9.
  • [22] Kumar P, Dubey RC, Maheshwari DK. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res. 2012;167(8):493-499. DOI: 10.1016/j.micres.2012.05.002.
  • [23] Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda Mdel C, Glick BR. Plant growth-promoting bacterial endophytes. Microbiol Res. 2016;183:92-99. DOI: 10.1016/j.micres.2015.11.008.
  • [24] Krawczyk K, Zwoliñska A, Kamasa J, Maćkowiak-Sochacka A, Przemieniecki S. Identification and characterization of plant growth promoting endophytic bacteria. Progress Plant Protect. 2016;56:100-109. DOI: 10.14199/ppp-2016-018.
  • [25] Devi KA, Pandey G, Rawat AKS, Sharma GD, Pandey P. The Endophytic Symbiont – Pseudomonas aeruginosa Stimulates the Antioxidant Activity and Growth of Achyranthes aspera L. Front Microbiol. 2017;8:1897. DOI: 10.3389/fmicb.2017.01897.
  • [26] Zhao L, Xu Y, Lai XH, Shan C, Deng Z, Ji Y. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Braz J Microbiol. 2015;46(4):977-989. DOI: 10.1590/S1517-838246420140024.
  • [27] Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD. Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech. 2016;6(1):60. DOI: 10.1007/s13205-016-0393-y.
  • [28] Ji SH, Gururani MA, Chun SC. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res. 2014;169(1):83-98. DOI: 10.1016/j.micres.2013.06.003.
  • [29] Starovic M, Josic D, Pavlovic S, Drazic S, Postic D, Popovic T, Stojanovic S. The effect of IAA producing Bacillus sp. Q3 strain on marshmallow seed germination. Bulg J Agric Sci. 2013;19:572-577. https://www.researchgate.net/publication/258820995_The_effect_of_IAA_producIng_Bacillus_sp_Q3_strain_on_marshmallow_seed_germination.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6146993b-ca40-4b3b-ba9b-d339058971bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.