PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Optimum Temperature and Calcination Time in the Production of CaO Using Seashells Waste as CaCO3 Source

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Seashells waste is abundant in coastal area, especially in the locations where fisheries are a major occupation. This abundant resource of seashells opens a new opportunity further utilization. Seashells waste is a source of CaCO3, which may be converted into CaO via the calcination process. This study analyzed the characteristics of the CaO produced via calcination process at different temperature and calcination time. The calcination process was carried out at a temperature of 800°C, 900°C, and 1000°C with variation of 2, 3, and 4 hours in time. The Fourier transform infrared spectroscopy (FTIR) result showed that the spectrum of 2513 cm-1 as an indication of the C-H group containing CaO appearing after calcination. The FTIR results suggest that the calcination time did not gave major alteration to the functional groups. The results of X-ray diffraction (XRD) analysis showed that CaO laid at the angle of 58.1° and 64.6°. Scanning Electron Microscopy–Energy Dispersive X-Ray Spectroscopy (SEM-EDS) results showed that the most significant compositional outcome after the calcination process was Ca and O at all temperatures and calcination times. All calcined seashells showed rough surface and irregular shape particles. The result of a Thermogravimetric analysis (TGA) suggested that the highest mass alteration occurred at a temperature of 800°C with 78 mins of calcination time.
Słowa kluczowe
Rocznik
Strony
221--228
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
  • Study Program of Chemical Engineering, Faculty of Engineering, Universitas Singaperbangsa Karawang, 41361 Karawang, Jawa Barat, Indonesia
  • Study Program of Environmental Engineering, Faculty of Engineering, Universitas Singaperbangsa Karawang, 41361 Karawang, Jawa Barat, Indonesia
  • Research Center for Physics, Indonesian Institute of Sciences (LIPI), Jakarta 12710, Indonesia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
Bibliografia
  • 1. Abutu, J., Lawal, S.A., Ndaliman, M.B., Lafi a-Araga, R.A., Abdulrahman, A.S., 2019. Eff ects of Particle Size Distribution on the Properties of Natural-Based Composite. Int. J. Eng. Mater. Manuf. 4, 170–177. https://doi.org/10.26776/ijemm.04.04.2019.05
  • 2. Ajao, V., Bruning, H., Rijnaarts, H., Temmink, H., 2018. Natural fl occulants from fresh and saline wastewater: Comparative properties and fl occulation performances. Chem. Eng. J. 349, 622–632. https://doi.org/10.1016/j.cej.2018.05.123
  • 3. Almansoory, A.F., Idris, M., Abdullah, S.R.S., Anuar, N., Kurniawan, S.B., 2020. Response and capability of Scirpus mucronatus (L.) in phytotreating petrolcontaminated soil. Chemosphere 128760. https://doi.org/10.1016/j.chemosphere.2020.128760
  • 4. Bazargan, A., Kostić, M.D., Stamenković, O.S., Veljković, V.B., McKay, G., 2015. A calcium oxide-based catalyst derived from palm kernel shell gasifi cation residues for biodiesel production. Fuel 150, 519–525. https://doi.org/10.1016/j.fuel.2015.02.046
  • 5. Berent, K., Komarek, S., Lach, R., Pyda, W., 2019. The effect of calcination temperature on the structure and performance of nanocrystalline mayenite powders. Materials (Basel). 12. https://doi.org/10.3390/ma12213476
  • 6. Boey, P.L., Maniam, G.P., Hamid, S.A., Ali, D.M.H., 2011. Utilization of waste cockle shell (Anadara granosa) in biodiesel production from palm olein: Optimization using response surface methodology. Fuel 90, 2353–2358. https://doi.org/10.1016/j.fuel.2011.03.002
  • 7. Brites, C.D.S., Fiaczyk, K., Ramalho, J.F.C.B., Sójka, M., Carlos, L.D., Zych, E., 2018. Widening the Temperature Range of Luminescent Thermometers through the Intraand Interconfi gurational Transitions of Pr 3+. Adv. Opt. Mater. 6, 1701318. https://doi.org/10.1002/adom.201701318
  • 8. Dümichen, E., Barthel, A.K., Braun, U., Bannick, C.G., Brand, K., Jekel, M., Senz, R., 2015. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res. 85, 451–457. https://doi.org/10.1016/j.watres.2015.09.002
  • 9. Hadiyanto, H., Lestari, S.P., Abdullah, A., Widayat, W., Sutanto, H., 2016. The development of fly ash-supported CaO derived from mollusk shell of Anadara granosa and Paphia undulata as heterogeneous CaO catalyst in biodiesel synthesis. Int. J. Energy Environ. Eng. 7, 297–305. https://doi.org/10.1007/s40095–016–0212–6
  • 10. Huang, Y.F., Lee, Y.T., Chiueh, P. Te, Lo, S.L., 2018. Microwave calcination of waste oyster shells for CO 2 capture. Energy Procedia 152, 1242–1247. https://doi.org/10.1016/j.egypro.2018.09.176
  • 11. Imron, M.F.M.F., Kurniawan, S.B.S.B., Ismail, N.‘. N. ‘Izzati I., Abdullah, S.R.S.S.R.S., 2020. Future challenges in diesel biodegradation by bacteria isolates: A review. J. Clean. Prod. 251, 119716. https://doi.org/10.1016/j.jclepro.2019.119716
  • 12. Kadir, A.A., Abdullah, S.R.S., Othman, B.A., Hasan, H.A., Othman, A.R., Imron, M.F., Ismail, N. ‘Izzati, Kurniawan, S.B., 2020. Dual function of Lemna minor and Azolla pinnata as phytoremediator for Palm Oil Mill Effluent and as feedstock. Chemosphere 259, 127468. https://doi.org/10.1016/j.chemosphere.2020.127468
  • 13. Kaewdaeng, S., Sintuya, P., Nirunsin, R., 2017. Biodiesel production using calcium oxide from river snail shell ash as catalyst. Energy Procedia 138, 937–942. https://doi.org/10.1016/j.egypro.2017.10.057
  • 14. Kaplan, D.L., 1998. Mollusc shell structures: Novel design strategies for synthetic materials. Curr. Opin. Solid State Mater. Sci. 3, 232–236. https://doi.org/10.1016/S1359–0286(98)80096-X
  • 15. Kouzu, M., Hidaka, J.S., 2012. Transesterification of vegetable oil into biodiesel catalyzed by CaO: A review. Fuel 93, 1–12. https://doi.org/10.1016/j.fuel.2011.09.015
  • 16. Kurniawan, S.B., Abdullah, S.R.S., Imron, M.F., Said, N.S.M., Ismail, N. ‘Izzati, Hasan, H.A., Othman, A.R., Purwanti, I.F., 2020. Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery. Int. J. Environ. Res. Public Health 17, 1–33. https://doi.org/10.3390/ijerph17249312
  • 17. Kurniawan, S.B., Imron, M.F., 2019a. The effect of tidal fluctuation on the accumulation of plastic debris in the Wonorejo River Estuary, Surabaya, Indonesia. Environ. Technol. Innov. 15, 100420. https://doi.org/10.1016/j.eti.2019.100420
  • 18. Kurniawan, S.B., Imron, M.F., 2019b. Seasonal variation of plastic debris accumulation in the estuary of Wonorejo River, Surabaya, Indonesia. Environ. Technol. Innov. 16, 100490. https://doi.org/10.1016/j.eti.2019.100490
  • 19. Kwon, H.B., Lee, C.W., Jun, B.S., Yun, J. Do, Weon, S.Y., Koopman, B., 2004. Recycling waste oyster shells for eutrophication control. Resour. Conserv. Recycl. 41, 75–82. https://doi.org/10.1016/j.resconrec.2003.08.005
  • 20. Lin, S., Kiga, T., Wang, Y., Nakayama, K., 2011. Energy analysis of CaCO3 calcination with CO2 capture. Energy Procedia 4, 356–361. https://doi.org/10.1016/j.egypro.2011.01.062
  • 21. Mo, K.H., Alengaram, U.J., Jumaat, M.Z., Lee, S.C., Goh, W.I., Yuen, C.W., 2018. Recycling of seashell waste in concrete: A review. Constr. Build. Mater. 162, 751–764. https://doi.org/10.1016/j.conbuildmat.2017.12.009
  • 22. Mohamed, M., Yousuf, S., Maitra, S., 2012. Decomposition study of calcium carbonate in cockle shell. J. Eng. Sci. Technol.
  • 23. Morris, J.P., Backeljau, T., Chapelle, G., 2019. Shells from aquaculture: a valuable biomaterial, not a nuisance waste product. Rev. Aquac. 11, 42–57. https://doi.org/10.1111/raq.12225
  • 24. Nakatani, N., Takamori, H., Takeda, K., Sakugawa, H., 2009. Transesterification of soybean oil using combusted oyster shell waste as a catalyst. Bioresour. Technol. 100, 1510–1513. https://doi.org/10.1016/j.biortech.2008.09.007
  • 25. Nordin, N., Hamzah, Z., Hashim, O., Kasim, F.H., Abdullah, R., 2015. Effect of temperature in calcination process of seashells. Malaysian J. Anal. Sci.
  • 26. Purwanti, I.F., Kurniawan, S.B., Tangahu, B.V., Rahayu, N.M., 2017. Bioremediation of trivalent chromium in soil using bacteria. Int. J. Appl. Eng. Res. 12, 9346–9350.
  • 27. Raizada, P., Shandilya, P., Singh, P., Thakur, P., 2017. Solar light-facilitated oxytetracycline removal from the aqueous phase utilizing a H 2 O 2 /ZnWO 4 /CaO catalytic system . J. Taibah Univ. Sci. 11, 689–699. https://doi.org/10.1016/j.jtusci.2016.06.004
  • 28. Ramasamy, K.K., Gray, M., Job, H., Santosa, D., Li, X.S., Devaraj, A., Karkamkar, A., Wang, Y., 2016. Role of Calcination Temperature on the Hydrotalcite Derived MgO-Al2O3 in Converting Ethanol to Butanol. Top. Catal. 59, 46–54. https://doi.org/10.1007/s11244–015–0504–8
  • 29. Saleh, T.A., Tuzen, M., Sari, A., 2017. Magnetic activated carbon loaded with tungsten oxide nanoparticles for aluminum removal from waters. J. Environ. Chem. Eng. 5, 2853–2860. https://doi.org/10.1016/j.jece.2017.05.038
  • 30. Sirisomboonchai, S., Abuduwayiti, M., Guan, G., Samart, C., Abliz, S., Hao, X., Kusakabe, K., Abudula, A., 2015. Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energy Convers. Manag. 95, 242–247. https://doi.org/10.1016/j.enconman.2015.02.044
  • 31. Suryaputra, W., Winata, I., Indraswati, N., Ismadji, S., 2013. Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production. Renew. Energy 50, 795–799. https://doi.org/10.1016/j.renene.2012.08.060
  • 32. Tang, Y., Chen, G., Zhang, J., Lu, Y., 2011. Highly active cao for the transesterification to biodiesel production from rapeseed oil. Bull. Chem. Soc. Ethiop. 25, 37–42. https://doi.org/10.4314/bcse.v25i1.63359
  • 33. Titah, H.S., Pratikno, H., Moesriati, A., Imron, M.F., Putera, R.I., 2018a. Isolation and screening of diesel degrading bacteria from ship dismantling facility at Tanjungjati, Madura, Indonesia. J. Eng. Technol. Sci. 50, 99. https://doi.org/10.5614/j.eng.technol.sci.2018.50.1.7
  • 34. Titah, H.S., Purwanti, I.F., Tangahu, B.V., Kurniawan, S.B., Imron, M.F., Abdullah, S.R.S., Ismail, N. ‘Izzati, 2019. Kinetics of aluminium removal by locally isolated Brochothrix thermosphacta and Vibrio alginolyticus. J. Environ. Manage. 238, 194–200. https://doi.org/10.1016/j.jenvman.2019.03.011
  • 35. Titah, H.S., Rozaimah, S., Abdullah, S.R.S., Idris, M., Anuar, N., Basri, H., Mukhlisin, M., Tangahu, B.V., Purwanti, I.F., Kurniawan, S.B., 2018b. Arsenic resistance and biosorption by isolated Rhizobacteria from the roots of Ludwigia octovalvis. Int. J. Microbiol. 2018, 1–10. https://doi.org/10.1155/2018/3101498
  • 36. Wang, G., Dai, J., Luo, Q., Deng, N., 2021. Photocatalytic degradation of bisphenol A by TiO2@ aspartic acid-β-cyclodextrin@reduced graphene oxide. Sep. Purif. Technol. https://doi.org/10.1016/j.seppur.2020.117574
  • 37. Wang, J., Liu, E., Li, L., 2019. Characterization on the recycling of waste seashells with Portland cement towards sustainable cementitious materials. J. Clean. Prod. 220, 235–252. https://doi.org/10.1016/j.jclepro.2019.02.122
  • 38. Wang, W., Lin, F., Yan, B., Cheng, Z., Chen, G., Kuang, M., Yang, C., Hou, L., 2020. The role of seashell wastes in TiO2/Seashell composites: Photocatalytic degradation of methylene blue dye under sunlight. Environ. Res. 188, 109831. https://doi.org/10.1016/j.envres.2020.109831
  • 39. Wulandari, K.D., Ekaputri, J.J., Triwulan, Kurniawan, S.B., Primaningtyas, W.E., Abdullah, S.R.S., Ismail, N. ‘Izzati, Imron, M.F., 2021. Effect of microbes addition on the properties and surface morphology of fly ash-based geopolymer paste. J. Build. Eng. 33. https://doi.org/10.1016/j.jobe.2020.101596
  • 40. Yoon, G.L., Kim, B.T., Kim, B.O., Han, S.H., 2003. Chemical-mechanical characteristics of crushed oyster-shell. Waste Manag. 23, 825–834. https://doi.org/10.1016/S0956–053X(02)00159–9
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6143f527-3632-429c-b74e-c286355cf9b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.