PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Silicate Modifier on the Emission of Harmful Compounds from Phenolic Resin used in Cold-Box Technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In many foundries, the requirements placed on castings production have risen mainly over the few years. Further trends in recent years have been the ever increasing level of automation and introduction of new alloys, especially composites. On the other hand, the foundry environment has become increasingly difficult because is used many organic binders. Environmental regulations will be further tightened up. These processes are pursued at national, European and global level. Conformity with emission limits is becoming increasingly difficult. The problem is emission of aromatic hydrocarbons, phenol, odours and other harmful compounds to environment. The main purpose of many companies is reduction of this toxins. The new cold-box systems (based on phenolic resins) try to reduce the emission by introducing into the resin structure silicate modifiers. Research presented of this article evaluate the effectiveness of these methods. The results show comparison of two resins ("without" and "with" silicate modifier) for assessment of emission of harmful aromatic hydrocarbons and phenol.
Rocznik
Strony
151--156
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
Bibliografia
  • [1] Li, C. et al. (2016). Silicone-modified phenolic resin: Relationships between molecular structure and curing behavior. Thermochemical Acta. 639, 53-65. DOI: 10.1016/j.tca.2016.07.011.
  • [2] http:// www.mancusochemicals.com, 2017-08-01, 18:52.
  • [3] Żymankowska-Kumon, S., Kolczyk, J. (2016). Chromato-graphic analysis of selected products of thermal decomposition of core sands made in cold-box technology. Transactions of the Foundry Research Institute. 16(4), 369-378. DOI: 10.7356/iod.2016.25.
  • [4] Reduction of foundry odor emissions by use of new generations of organic binders, materials from Hüttenes-Albertus.
  • [5] Fabbri, D. & Vassura, I. (2006). Evaluating emission levels of polycyclic aromatic hydrocarbons from organic materials by analytical pyrolysis. Journal of Analysis and Applied Pyrolysis. 75, 150-158. DOI: 10.1016/j.jaap.2005.05.003.
  • [6] Fox, J.R., Adamovits, M. & Henry, C. (2002). Strategies for Reducing Foundry Emissions. AFS Transactions. 110, 1299-1309.
  • [7] Fang, S. et al. (2015). Preparation and curing behavior of silicone-modified phenolic resin. Applied Mechanics and Materials. 713-715, 2798-2803. DOI: 10.4028/www.scienti fic.net/AMM.713-715.2798.
  • [8] Holtzer, M., Dańko, R., Dańko, J., Kubecki, M., Żymankowska-Kumon, S., Bobrowski, A., Spiewok, W. (2013). The assesment of harmfulness of binding materials used for a new generation of core and molding sands. Kraków: Akapit.
  • [9] Kubecki, M., Holtzer. M. & Żymankowska-Kumon, S. (2013). Investigations of the temperature influence on formation of compounds from the BTEX group during the thermal decomposition of furan resin. Archives of Foundry Engineering. 13(2), 85-90.
  • [10] Żymankowska-Kumon, S., Bobrowski, A. & Grabowska, B. (2016). Comparison of the emission of aromatic hydrocarbons from moulding sands with furfural resin with the low content of furfuryl alcohol and different activators. Archives of Foundry Engineering. 16(4), 187-190.
  • [11] Nason, H.K. (1939). Silicon modified phenolic resins and process for producing same. Patent US 2182208 A.
  • [12] Ahamad, T. & Alshehri, S.M. (2014). Thermal degradation and evolved gas analysis: A polymeric blend of urea formaldehyde (UF) and epoxy (DGEBA) resin. Arabian Journal of Chemistry. 7, 1140–1147, DOI: 10.1016/j.arabjc. 2013.04.013.
  • [13] Jingai, S., Rong, Y., Hanping, C., Baowen, W., Dong, H.L. & David, T.L. (2008). Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry Fourier transform infrared analysis. Energy Fuels. 22, 38-45. DOI: 10.1021/ ef700287p.
  • [14] Costa, L. et al. (1997). Structure-charring relationship on phenol-formaldehyde type resins. Polymer Degradation and Stability. 56, 23-35. DOI: 10.1016/S0141-3910(96)00171-1.
  • [15] Yangfei, C., Zhiqin, C., Shaoyi, X. & Hangbo, L. (2008). A novel thermal degradation mechanism of phenol-formaldehyde type resins. Thermochimica Acta. 476(1-2), 39-43. DOI: 10.1016/j.tca.2008.04.013.
  • [16] Jiang, H. & Wang, J. et al. (2012). The pyrolysis mechanism of phenol formaldehyde resin. Polymer Degradation and Stability. 97(8), 1527-1533. DOI: 10.1016/j.polymde gradstab.2012.04.016.
  • [17] Poljanšek, I., Šebenik, U. & Krajnc, M. (2006). Characterization of phenol-urea-formaldehyde resin by inline FTIR Spectroscopy. Journal of Applied Polimer Science. 99, 2016-2028. DOI: 10.1002/app.22161.
  • [18] Zhao, Y., Yan, N. & Feng, M.W. (2013). Thermal degradation characteristic of phenol-formaldehyde resins derived from beetle infested pine barks. Thermochimica Acta 555, 46-52. DOI: 10.1016/j.tca.2012.12.002.
  • [19] Jiang, D. et al. (2009). Simulating the initial stage of phenolic resin carbonization via the reaxff reactive force field. Journal of Physical Chemistry A. 113(25), 6891-6894. DOI: 10.1021/ jp902986u.
  • [20] Poljanšek, I. & Krajnc, M. (2005). Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR Spectroscopy. Acta Chimica Slovenica. 52, 238-244.
  • [21] Alonso, M.V. et al. (2011). Thermal degradation of lignin–phenol-formaldehyde and phenol-formaldehyde resol resins. Journal of Thermal Analysis and Calorimetry. 105(1), 349-356. DOI: 10.1007/s10973-011-1405-0.
  • [22] Chen, Z., Chen, Y. & Liu, H. (2013). Pyrolysis of phenolic resin by TG-MS and FTIR analysis. Advanced Materials Research. 631-632, 104-109. DOI: 10.4028/www.scientific. net/AMR.631-632.104.
  • [23] Costa, L. et al. (1997). Structure-charring relationship on phenol-formaldehyde type resins. Polymer Degradation and Stability. 56, 23-35. DOI: 10.1016/S0141-3910(96)00171-1.
  • [24] Żymankowska-Kumon, S., Kolczyk, J. (2016). Chromato-graphic analysis of selected products of thermal decomposition of core sands made in cold-box technology. Transactions of the Foundry Research Institute 16(4), 369-378. DOI: 10.7356/iod.2016.25.
  • [25] Grabowska, B., Kaczmarska, K., Bobrowski, A., Żymankowska-Kumon, S. & Kurleto-Kozioł, Ż. (2017). TG-DTG-DSC, FTIR, DRIFT, and Py-GC-MS Studies of Thermal Decomposition for Poly(sodium acrylate)/Dextrin (PAANa/D) – New Binder BioCo3. Journal of Casting & Materials Engineering. 1(1), 27-32. DOI: 10.7494/jcme. 2017.1.1.27.
  • [26] Fabbri, D. & Vassura, I. (2006). Evaluating emission levels of polycyclic aromatic hydrocarbons from organic materials by analytical pyrolysis. Journal of Analysis and Applied Pyrolysis. 75, 150-158. DOI: 10.1016/j.jaap.2005.05.003.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6142db59-2057-4381-881f-8b573f002c89
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.