PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exploring the Impact of Reclaimed Water on Latin America's Development

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This review examines the economic impact of Latin American regulations, strategies, and community involvement in mitigating the detrimental effects of mismanaged municipal domestic wastewater on public health, safety, and the economy. A systematic review and meta-analysis are conducted to assess the economic potential of reclaimed water in the region, utilizing various data sources and methodologies. The findings reveal that Latin America faces challenges in wastewater treatment, regulation, and resource management, affecting the market potential of reclaimed water. However, resource recovery initiatives present economic opportunities, including cost reduction, agricultural growth, energy recovery, and resource reuse.The study also highlights the lack of sanitation and waste- water treatment coverage data in many Latin American countries. By examining the commercial possibilities, regulatory frameworks, and environmental benefits of reclaimed water, this research provides valuable insights for sustainable water management and resource recovery policymakers, practitioners, and researchers. Furthermore, it emphasizes the economic advantages of utilizing reclaimed water and biosolids in Latin America, advocating for the implementation of strong regulations and policies to promote job creation and economic growth.
Rocznik
Strony
157--173
Opis fizyczny
Bibliogr. 90 poz., rys., tab.
Twórcy
  • Environmental Engineering, Escuela Superior Politécnica Agropecuaria de Manabí „Manuel Félix López”, ESPAM-MFL, Calceta, 10 de Agosto #82 y Granda Centeno, 59304, Calceta, Ecuador
  • Environmental Engineering, Escuela Superior Politécnica Agropecuaria de Manabí „Manuel Félix López”, ESPAM-MFL, Calceta, 10 de Agosto #82 y Granda Centeno, 59304, Calceta, Ecuador
  • Environmental Engineering, Escuela Superior Politécnica Agropecuaria de Manabí „Manuel Félix López”, ESPAM-MFL, Calceta, 10 de Agosto #82 y Granda Centeno, 59304, Calceta, Ecuador
  • Environmental Engineering, Escuela Superior Politécnica Agropecuaria de Manabí „Manuel Félix López”, ESPAM-MFL, Calceta, 10 de Agosto #82 y Granda Centeno, 59304, Calceta, Ecuador
Bibliografia
  • 1. Ankley G. T. 2008. Genomics in regulatory ecotoxicology applications and challenges. CRC Press, USA.
  • 2. Arena C., Genco M., & Mazzola M. R. 2020. Environmental Benefits and Economical Sustainability of Urban Wastewater Reuse for Irrigation—A Cost-Benefit Analysis of an Existing Reuse Project in Puglia, Italy. Water, 12(10), 2926. https://doi.org/10.3390/w12102926
  • 3. Avellán T., Nagabhatla N., Jalan I., & Liao D. 2021. Integrating circularity to achieve sustainability: Examples of various wastewater treatment systems. En Circular Economy and Sustainability: Volume 2: Environmental Engineering. Elsevier.
  • 4. Awasthi M. K., Singh E., Binod P., Sindhu R., Sarsaiya S., Kumar A., Chen H., Duan Y., Pandey A., Kumar S., Taherzadeh M. J., Li J., & Zhang Z. 2022. Biotechnological strategies for bio-transforming biosolid into resources toward circular bio-economy: A review. Renewable and Sustainable Energy Reviews, 156, 111987. https://doi.org/10.1016/j.rser.2021.111987
  • 5. Banchón C. 2021. Airborne Bacteria from Wastewater Treatment and their Antibiotic Resistance: A Meta-Analysis. Journal of Ecological Engineering, 22(10), 205-214. https://doi.org/10.12911/22998993/142207
  • 6. Banchón C., Borodulina T., Posligua P., & Gualoto M. 2019. Biostabilization of sewage sludge in the Antarctic. Antarctic Science, 31(4), 216-217. https://doi.org/10.1017/S0954102019000221
  • 7. Bashar R., Gungor K., Karthikeyan K. G., & Barak P. 2018. Cost effectiveness of phosphorus removal processes in municipal wastewater treatment. Chemosphere, 197, 280-290. https://doi.org/10.1016/j.chemosphere.2017.12.169
  • 8. Belfield C., & Levin H. M. 2010. Cost–Benefit Analysis and Cost–Effectiveness Analysis. International Encyclopedia of Education (Third Edition). Elsevier. https://doi.org/10.1016/B978-0-08-044894-7.01245-8
  • 9. Benavides L., Avellán T., Caucci S., Hahn A., Kirschke S., & Müller A. 2019. Assessing Sustainability of Wastewater Management Systems in a Multi-Scalar, Transdisciplinary Manner in Latin America. Water, 11(2), 249. https://doi.org/10.3390/w11020249
  • 10. Bertoméu-Sánchez S., & Serebrisky T. 2019. Latin American Countries: Water and Sanitation in Latin America and the Caribbean: An Update on the State of the Sector. Facing the Challenges of Water Governance (189-221). Springer International Publishing. https://doi.org/10.1007/978-3-319-98515-2_8
  • 11. Bijekar S., Padariya H. D., Yadav V. K., Gacem A., Hasan M. A., Awwad N. S., Yadav K. K., Islam S., Park S., & Jeon B.-H. 2022. The State of the Art. and Emerging Trends in the Wastewater Treatment in Developing Nations. Water, 14(16), 2537. https://doi.org/10.3390/w14162537
  • 12. BMUV. 2023. Gesetz über Abgaben für das Einleiten von Abwasser in Gewässer. Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV). https://www.bmuv.de/gesetz/
  • 13. Borja-Serrano P., Ochoa-Herrera V., Maurice L., Morales G., Quilumbaqui C., Tejera E., & Machado A. 2020. Determination of the Microbial and Chemical Loads in Rivers from the Quito Capital Province of Ecuador (Pichincha)—A Preliminary Analysis of Microbial and Chemical Quality of the Main Rivers. International Journal of Environmental Research and Public Health, 17(14), 5048. https://doi.org/10.3390/ijerph17145048
  • 14. Brichetti J. P., Mastronardi L., Amiassorho M. E. R., Serebrisky T., & Solís B. 2021. The infraestructure gap in Latin America and the Caribbean. Inter-American Development Bank. http://www.iadb.org
  • 15. Camiade M., Bodilis J., Chaftar N., Riah-Anglet W., Gardères J., Buquet S., Ribeiro A. F., & Pawlak B. 2020. Antibiotic resistance patterns of Pseudomonas spp. Isolated from faecal wastes in the environment and contaminated surface water. FEMS Microbiology Ecology, 96(2), fiaa008. https://doi.org/10.1093/femsec/fiaa008
  • 16. Ćetković J., Knežević M., Lakić S., Žarković M., Vujadinović R., Živković A., & Cvijović J. 2022. Financial and Economic Investment Evaluation of Wastewater Treatment Plant. Water, 14(1), 122. https://doi.org/10.3390/w14010122
  • 17. Chen B., Yang S., Cao Q., & Qian Y. 2020. Life cycle economic assessment of coal chemical waste- water treatment facing the ‘Zero liquid discharge’ industrial water policies in China: Discharge or reuse? Energy Policy, 137, 111107. https://doi.org/10.1016/j.enpol.2019.111107
  • 18. Chen W., Lu S., Jiao W., Wang M., & Chang A. C. 2013. Reclaimed water: A safe irrigation water source? Environmental Development, 8, 74-83. https://doi.org/10.1016/j.envdev.2013.04.003
  • 19. Chrispim M. C., Scholz M., & Nolasco M. A. 2019. Phosphorus recovery from municipal wastewater treatment: Critical review of challenges and opportunities for developing countries. Journal of Environmental Management, 248, 109268. https://doi.org/10.1016/j.jenvman.2019.109268
  • 20. Costa S., Coutinho L., Brito A. G., Nogueira R., Machado A. P., Salas J. J., & Póvoa C. 2009. Cost- effectiveness analysis for sustainable wastewater engineering and water resources management: A case study at Minho-Lima river basins (Portugal). Desalination and Water Treatment, 4(1-3), 22-27. https://doi.org/10.5004/dwt.2009.350
  • 21. Deng S., Yan X., Zhu Q., & Liao C. 2019. The utilization of reclaimed water: Possible risks arising from waterborne contaminants. Environmental Pollution, 254, 113020. https://doi.org/10.1016/j.envpol.2019.113020
  • 22. Drechsel P., & Seidu R. 2011. Cost-effectiveness of options for reducing health risks in areas where food crops are irrigated with treated or untreated wastewater. Water International, 36(4), 535-548. https://doi.org/10.1080/02508060.2011.594549
  • 23. du Plessis, A. 2019. Current and Future Water Scarcity and Stress. En A. du Plessis (Ed.), Water as an Inescapable Risk: Current Global Water Availability, Quality and Risks with a Specific Focus on South Africa (pp. 13-25). Springer International Publishing. https://doi.org/10.1007/978-3-030-03186-2_2
  • 24. Duong K., & Saphores J. M. 2015. Obstacles to wastewater reuse: An overview. WIREs Water, 2(3), 199-214. https://doi.org/10.1002/wat2.1074
  • 25. ECLAC. 2023. Regional urban statistics in Latin America. United Nations - Urban and Cities Platform of Latin America and the Caribbean. https://plataformaurbana.cepal.org/en/regional-urban-statistics
  • 26. EPA. 2011. Principles of Design and Operations of Wastewater Treatment Pond Systems for Plant Operators, Engineers, and Managers. Office of Research and Development National Risk Management Research Laboratory - Land Remediation and Pollution Control Division.
  • 27. Fan Y., Chen W., Jiao W., & Chang A. C. 2013. Costbenefit analysis of reclaimed wastewater reuses in Beijing. Desalination and Water Treatment, 1-10. https://doi.org/10.1080/19443994.2013.859102
  • 28. Fernández del Castillo A., Garibay M. V., Senés-Guerrero C., Orozco-Nunnelly D. A., de Anda J., & Gradilla-Hernández M. S. (2022). A review of the sustainability of anaerobic reactors combined with constructed wetlands for decentralized wastewater treatment. Journal of Cleaner Production, 371, 133428. https://doi.org/10.1016/j.jclepro.2022.133428
  • 29. Fernandez-Cassi X., Silvera C., Cervero-Aragó S., Rusiñol M., Latif-Eugeni F., Bruguera-Casamada C., Civit S., Araujo R.M., Figueras M.J., Girones R., & Bofill-Mas S. (2016). Evaluation of the microbiological quality of reclaimed water produced from a lagooning system. Environmental Science and Pollution Research, 23(16), 16816-16833. https://doi.org/10.1007/s11356-016-6812-0
  • 30. Fernández-Luqueño F., López-Valdez F., Gamero-Melo P., Luna S., Aguilera-González E.N., Martínez A.I., Hernández-Martínez G., Herrera-Mendoza R., Álvarez M.A., & Pérez-Velázquez I.R. (2010). Heavy metal pollution in drinking water – A global risk for human health: A review. Afr. J. Environ. Sci. Technol., 18.
  • 31. Gil H. A., Cisneros J. M., De Prada J. D., Plevich J. O., & Sanchez Delgado A. R. 2013. Green technologies for the use of urban wastewater: Economic analysis. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 8(3), 118-128. https://doi.org/10.4136/ambi-agua.1174
  • 32. Gil-Meseguer E., Bernabé-Crespo M. B., & Gómez-Espín J. M. (2019). Recycled Sewage – A Water Resource for Dry Regions of Southeastern Spain. Water Resources Management, 33(2), 725-737. https://doi.org/10.1007/s11269-018-2136-9
  • 33. Goddard F.G.B., Pickering A.J., Ercumen A., Brown J., Chang H.H., & Clasen T. 2020. Faecal contamination of the environment and child health: A systematic review and individual participant data meta-analysis. The Lancet Planetary Health, 4(9), 405-415. https://doi.org/10.1016/S2542-5196(20)30195-9
  • 34. Guerra-Rodríguez S., Oulego P., Rodríguez E., Singh D.N., & Rodríguez-Chueca J. 2020. Towards the implementation of circular economy in the wastewater sector: challenges and opportunities. Water, 12(5), 1431. https://doi.org/10.3390/w12051431
  • 35. Guthmann J. 1995. Epidemic cholera in Latin America: Spread and routes of transmission. J Trop Med. Hyg, 98(6), 419-427. PubMed.
  • 36. Gyawali P., & Hewitt J. 2020. Faecal contaminatioin bivalve molluscan shellfish: Can the application of the microbial source tracking method minimise public health risks? Current Opinion in Environmental Science & Health, 16, 14-21. https://doi.org/10.1016/j.coesh.2020.02.005
  • 37. Hamidian A. H., Ozumchelouei E. J., Feizi F., Wu C., Zhang Y., & Yang M. 2021. A review on the characteristics of microplastics in wastewater treatment plants: A source for toxic chemicals. Journal of Cleaner Production, 295, 126480.
  • 38. Hecker L. P., Wätzold F., & Markwardt G. 2020. Spotlight on Spatial Spillovers: An Econometric Analysis of Wastewater Treatment in Mexican Municipalities. Ecological Economics, 175, 106693. https://doi.org/10.1016/j.ecolecon.2020.106693
  • 39. Helmecke M., Fries E., & Schulte C. 2020. Regulating water reuse for agricultural irrigation: Risks related to organic micro-contaminants. Environmental Sciences Europe, 32(1), 4. https://doi.org/10.1186/ s12302-019-0283-0
  • 40. Humaira Q., Rouf A., Mohammad A., & Gowhar H. 2020. Fresh Water Pollution Dynamics and Remediation (1.a ed., Vol. 1). Springer. https://doi.org/10.1007/978-981-13-8277-2
  • 41. Jimenez B., & Asano T. 2015. Water Reuse: An International Survey of current practice, issues and needs. Water Intelligence Online, 7(0). https://doi.org/10.2166/9781780401881
  • 42. Jones E. R., van Vliet M. T. H., Qadir M., & Bierkens M. F. P. 2021. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth System Science Data, 13(2), 237-254. https://doi.org/10.5194/essd-13-237-2021
  • 43. Kamble S., Singh A., Kazmi A., & Starkl M. 2019. Environmental and economic performance evaluation of municipal wastewater treatment plants in India: A life cycle approach. Water Science and Technology, 79(6), 1102-1112. https://doi.org/10.2166/wst.2019.110
  • 44. Kesari K. K., Soni R., Jamal Q. M. S., Tripathi P., Lal J. A., Jha N. K., Siddiqui M. H., Kumar P., Tripathi V., & Ruokolainen J. 2021. Wastewater Treatment and Reuse: A Review of its Applications and Health Implications. Water, Air, & Soil Pollution, 232(5), 208. https://doi.org/10.1007/s11270-021-05154-8
  • 45. Laura F., Tamara A., Müller A., Hiroshan H., Christina D., & Serena C. 2020. Selecting sustainable sewage sludge reuse options through a systematic assessment framework: Methodology and case study in Latin America. Journal of Cleaner Production, 242, 118389. https://doi.org/10.1016/j.jclepro.2019.118389
  • 46. Lorenzo-Ginori J., Rodriguez-Fuentes A., Abalo R., & Rodriguez R. 2009. Digital Signal Processing in the Analysis of Genomic Sequences. Current Bioinformatics, 4(1), 28-40. https://doi.org/10.2174/157489309787158134
  • 47. Mahlknecht J., González-Bravo R., & Loge F. J. 2020. Water-energy-food security: A Nexus perspective of the current situation in Latin America and the Caribbean. Energy, 194. https://doi.org/10.1016/j.energy.2019.116824
  • 48. Malmsten M., & Lekkas D. F. (2010). Cost analysis of urban water supply and waste water treatment processes to support decisions and policy making: Application to a number of Swedish communities. Desalination and Water Treatment, 18(1-3), 327-340. https://doi.org/10.5004/dwt.2010.1961
  • 49. Marchetti D., Oliveira R., & Figueira A. R. (2019). Are global north smart city models capable to assess Latin American cities? A model and indicators for a new context. Cities, 92, 197-207. https://doi.org/10.1016/j.cities.2019.04.001
  • 50. Massoud M. A., Tarhini A., & Nasr J. A. (2009). Decentralized approaches to wastewater treatment and management: Applicability in developing countries. Journal of Environmental Management, 90(1), 652-659. https://doi.org/10.1016/j.jenvman.2008.07.001
  • 51. Mebrahtom S., Worku A., & Gage D. J. (2022). The risk of water, sanitation and hygiene on diarrhea-related infant mortality in eastern Ethiopia: A population-based nested case-control. BMC Public Health, 22(1), 343. https://doi.org/10.1186/s12889-022-12735-7
  • 52. Mills K., Golden J., Bilinski A., Beckman A. L., Mc-Daniel K., Harding A. S., France A., Tobar H. N., & Vecitis C. 2018. Bacterial contamination of reusable bottled drinking water in Ecuador. Journal of Water, Sanitation and Hygiene for Development, 8(1), 81-89. https://doi.org/10.2166/washdev.2017.064
  • 53. Mizyed N., & Mays D. C. 2020. Reuse of Treated Wastewater: From Technical Innovation to Legitimization. World Environmental and Water Resources Congress 2020, 16-30. https://doi.org/10.1061/9780784482988.003
  • 54. Moreno L., Pozo M., Vancraeynest K., Bain R., Palacios J. C., & Jácome F. 2020. Integrating water-quality analysis in national household surveys: Water and sanitation sector learnings of Ecuador. Npj Clean Water, 3(1), 23. https://doi.org/10.1038/s41545-020-0070-x
  • 55. Mulder A.C., Franz E., de Rijk S., Versluis, M.A. J., Coipan C., Buij, R., Müskens G., Koene M., Pijnacker, R., Duim, B., Bloois, L. van der G., Veldman K., Wagenaar J.A., Zomer A.L., Schets, F.M., Blaak H., & Mughini-Gras L. 2020. Tracing the animal sources of surface water contamination with Campylobacter jejuni and Campylobacter coli. Water Research, 187, 116421. https://doi.org/10.1016/j.watres.2020.116421
  • 56. Natasha Shahid M., Khalid S., Niazi N. K., Murtaza B., Ahmad N., Farooq A., Zakir A., Imran M., & Abbas G. 2021. Health risks of arsenic buildup in soil and food crops after wastewater irrigation. Science of The Total Environment, 772, 145266. https://doi.org/10.1016/j.scitotenv.2021.145266
  • 57. Noyola A., Padilla-Rivera A., Morgan-Sagastume J. M., Güereca L. P., & Hernández-Padilla F. 2012. Typology of municipal wastewater treatment technologies in Latin America. CLEAN - Soil, Air, Water, 40(9), 926-932. https://doi.org/10.1002/clen.201100707
  • 58. Ortega-Paredes D., de Janon S., Villavicencio F., Ruales K.J., De La Torre K., Villacís J. E., Wagenaar J.A., Matheu J., Bravo-Vallejo C., Fernández-Moreira E., & Vinueza-Burgos C. 2020. Broiler Farms and Carcasses Are an Important Reservoir of Multi-Drug Resistant Escherichia coli in Ecuador. Frontiers in Veterinary Science, 7, 547843. https://doi.org/10.3389/fvets.2020.547843
  • 59. Othman Y. A., Al-Assaf A., Tadros M. J., & Albalawneh A. 2021. Heavy Metals and Microbes Accumulation in Soil and Food Crops Irrigated with Wastewater and the Potential Human Health Risk: A Metadata Analysis. Water, 13(23), 3405. https://doi.org/10.3390/w13233405
  • 60. Peña-Guzmán C., Ulloa-Sánchez S., Mora K., Helena-Bustos R., Lopez-Barrera E., Alvarez J., & Rodriguez-Pinzón M. 2019. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. Journal of Environmental Management, 237, 408-423. https://doi.org/10.1016/j.jenvman.2019.02.100
  • 61. Preisner M., Neverova-Dziopak E., & Kowalewski Z. 2020. An Analytical Review of Different Approaches to Wastewater Discharge Standards with Particular Emphasis on Nutrients. Environmental Management, 66(4), 694-708. https://doi.org/10.1007/s00267-020-01344-y
  • 62. Rachmadi A.T., Kitajima M., Kato T., Kato H., Okabe S., & Sano D. 2020. Required chlorination doses to fulfill the credit value for disinfection of enteric viruses in water: A critical review. Environmental Science & Technology, 54(4), 2068-2077. https://doi.org/10.1021/acs.est.9b01685
  • 63. Real C., Calderón C., & Mantilla G. 2021. Regional analysis of regulatory instruments on discharges, receiving bodies and circular economy. Banco de Desarrollo de América Latina. https://cafscioteca.azurewebsites.net/handle/123456789/1984
  • 64. Rebitzer G., Hunkeler D., & Jolliet O. 2003. LCC-The economic pillar of sustainability: Methodology and application to wastewater treatment: LCC-The Economic Pillar of Sustainability: Methodology and Application to Wastewater Treatment. Environmental Progress, 22(4), 241-249. https://doi.org/10.1002/ep.670220412
  • 65. Rodríguez Miranda J. P., García-Ubaque C. A., & Penagos Londoño J. C. 2015. Analysis of the investment costs in municipal wastewater treatment plants in Cundinamarca. DYNA, 82(192), 230-238. https://doi.org/10.15446/dyna.v82n192.44699
  • 66. Salvador D., Neto, C., Benoliel M. J., & Caeiro M. F. 2020. Assessment of the Presence of Hepatitis E Virus in Surface Water and Drinking Water in Portugal. Microorganisms, 8(5), 761. https://doi.org/10.3390/microorganisms8050761
  • 67. Saravanan A., Senthil Kumar P., Jeevanantham S., Karishma S., Tajsabreen B., Yaashikaa P. R., & Reshma B. (2021). Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere, 280, 130595. https://doi.org/10.1016/j.chemosphere.2021.130595
  • 68. Scherer C., Weber A., Stock F., Vurusic S., Egerci H., Kochleus C., Arendt N., Foeldi C., Dierkes G., Wagner M., Brennholt N., & Reifferscheid G. (2020). Comparative assessment of microplastics in water and sediment of a large European river. Science of The Total Environment, 738, 139866. https://doi.org/10.1016/j.scitotenv.2020.139866
  • 69. Suryawan I. W. K., Rahman A., Lim J.-W., & Helmy Q. (2021). Environmental impact of municipal wastewater management based on analysis of life cycle assessment in Denpasar City. Desalination and water treatment, 244, 55-62. https://doi.org/10.5004/dwt.2021.27957
  • 70. The World Bank. 2017. Rethinking Infrastructure in Latin America and the Caribbean. International Bank for Reconstruction and Development / The World Bank. www.worldbank.org
  • 71. Tudela-Mamani J. W. 2017. Estimation of economic benefits for the improvement of the wastewater treatment system in the city of Puno (Peru). Revista Desarrollo y Sociedad, 79, 189-238. https://doi.org/10.13043/dys.79.6
  • 72. Ulloa-Murillo L. M., Villegas L. M., Rodríguez-Ortiz A. R., Duque-Acevedo M., & Cortés-García F. J. 2022. Management of the Organic Fraction of Municipal Solid Waste in the Context of a Sustainable and Circular Model: Analysis of Trends in Latin America and the Caribbean. International Journal of Environmental Research and Public Health, 19(10), 6041. https://doi.org/10.3390/ijerph19106041
  • 73. UN Water. 2020. The United Nations World Water Development Report 2020 Water and Climate Change (p. 235). United Nations educational. https://unesdoc.unesco.org
  • 74. UNESCO. 2015. Urban water challenges in the Americas: A perspective from the Academies of Sciences. Inter-American Network of Academies of Sciences, UNESCO Office Montevideo and Regional Bureau for Science in Latin America and the Caribbean.
  • 75. UNESCO. 2017. Wastewater: The Untapped Resource: The United Nations World Water Development Report 2017. United Nations Educational, Scientific and CulturalOrganization. www.unwater.org
  • 76. Ungureanu N., Vlăduț V., & Voicu G. 2020. Water Scarcity and Wastewater Reuse in Crop Irrigation. Sustainability, 12(21), 9055. https://doi.org/10.3390/su12219055
  • 77. Van De Walle A., Kim M., Alam M. K., Wang X., Wu D., Dash S. R., Rabaey K., & Kim J. 2023. Greywater reuse as a key enabler for improving urban wastewater management. Environmental Science and Ecotechnology, 100277. https://doi.org/10.1016/j.ese.2023.100277
  • 78. Van Puijenbroek P. J. T. M., Beusen A. H. W., & Bouwman A. F. 2019. Global nitrogen and phosphorus in urban waste water based on the Shared Socio-economic pathways. Journal of Environmental Management, 231, 446-456. https://doi.org/10.1016/j.jenvman.2018.10.048
  • 79. van Soesbergen A., Brouwer R., Baan P., Hellegers P., & Polman N. 2008. Assessing the cost-effectiveness of pollution abatement measures in agriculture, industry and the wastewater treatment sector. Instituut voor Milieuvraagstukken, Vrije Universiteit.; WEMPA Report; No. Report-07. https://research.vu.nl/ws/
  • 80. Verbyla M. E., Iriarte M. M., Mercado Guzmán A., Coronado O., Almanza M., & Mihelcic J. R. 2016. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops. Science of The Total Environment, 551-552, 429-437. https://doi.org/10.1016/j.scitotenv.2016.01.159
  • 81. Von Sperling, M. 2007. Activated sludge and aerobic biofilm reactors. IWA publ.
  • 82. Voulvoulis, N. 2018. Water reuse from a circular economy perspective and potential risks from an unregulated approach. Current Opinion in Environmental Science & Health, 2, 32-45. https://doi.org/10.1016/j.coesh.2018.01.005
  • 83. Wang H., Kjellberg I., Sikora P., Rydberg H., Lindh M., Bergstedt O., & Norder H. 2020. Hepatitis E virus genotype 3 strains and a plethora of other viruses detected in raw and still in tap water. Water Research, 168, 115141. https://doi.org/10.1016/j.watres.2019.115141
  • 84. WHO. 2022. Drinking-water. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/
  • 85. Wood A., Blackhurst M., Hawkins T., Xue X., Ashbolt N., & Garland J. 2015. Cost-effectiveness of nitrogen mitigation by alternative household wastewater management technologies. Journal of Environmental Management, 150, 344-354. https://doi.org/10.1016/j.jenvman.2014.10.002
  • 86. Xu R., Cai Y., Wang X., Li C., Liu Q., & Yang Z. 2020. Agricultural nitrogen flow in a reservoir watershed and its implications for water pollution mitigation. Journal of Cleaner Production, 267, 122034. https://doi.org/10.1016/j.jclepro.2020.122034
  • 87. Yadav G., Mishra A., Ghosh P., Sindhu R., Vinayak V., & Pugazhendhi A. 2021. Technical, economic and environmental feasibility of resource recovery technologies from wastewater. Science of The Total Environment, 796, 149022. https://doi.org/10.1016/j.scitotenv.2021.149022
  • 88. Yi L., Jiao,W., Chen X., & Chen W. 2011. An overview of reclaimed water reuse in China. Journal of Environmental Sciences, 23(10), 1585-1593. https://doi.org/10.1016/S1001-0742(10)60627-4
  • 89. Zarei M. 2020. Wastewater resources management for energy recovery from circular economy perspective. Water-Energy Nexus, 3, 170-185. https://doi.org/10.1016/j.wen.2020.11.001
  • 90. Zhang X., & Liu Y. 2022. Circular economy is game-changing municipal wastewater treatment technology towards energy and carbon neutrality. Chemical Engineering Journal, 429, 132114. https://doi.org/10.1016/j.cej.2021.132114
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61412f4b-e63c-4b67-8c10-c22c593037e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.