PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of microwave power on EPR spectra of natural and synthetic dental biocompatible materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
III Electron Magnetic Resonance Forum EMR-PL (3 ; 23-25.05.2014 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
Paramagnetic centers in the two exemplary synthetic and natural dental biocompatible materials applied in implantology were examined by the use of an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra were measured in the range of microwave power 2.2–70 mW. The aims of this work were to compare paramagnetic centers concentrations in different dental biocompatible materials and to determine the effect of microwave power on parameters of their EPR spectra. It is the very fi rst and innovatory examination of paramagnetic centers in these materials. It was pointed out that paramagnetic centers existed in both natural (~1018 spin/g) and synthetic (~1019 spin/g) dental biocompatible materials, but the lower free radical concentration characterized the natural sample. Continuous microwave saturation of EPR spectra indicated that faster spin-lattice relaxation processes existed in synthetic dental biocompatible materials than in natural material. Linewidths (ΔBpp) of the EPR spectra of the natural dental material slightly increased for the higher microwave powers. Such effect was not observed for the synthetic material. The broad EPR lines (ΔBpp): 2.4 mT, 3.9 mT, were measured for the natural and synthetic dental materials, respectively. Probably strong dipolar interactions between paramagnetic centers in the studied samples may be responsible for their line broadening. EPR spectroscopy is the useful experimental method in the examination of paramagnetic centers in dental biocompatible materials.
Czasopismo
Rocznik
Strony
449--453
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
  • Department of Biophysics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-200 Sosnowiec, Poland
autor
  • Department of Biophysics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-200 Sosnowiec, Poland
autor
  • Department of Biophysics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-200 Sosnowiec, Poland
Bibliografia
  • 1. Vyalikh, A., Mai, R., & Scheler, U. (2013). OH– deficiency in dental enamel, crown and root dentine as studied by 1H CRAMPS. Biomed. Mater. Eng., 23(6), 507–512.
  • 2. Kolmas, J., Szwaja, M., & Kolodziejski, W. (2012). Solid-state NMR and IR characterization of commercial xenogenic biomaterials used as bone substitutes. J. Pharm. Biomed. Anal., 5(61), 136–141.
  • 3. Qidwai, M., Sheraz, Ma., Ahmed, S., Alkhuraif, A. A., & Rehman, I. U. (2014). Preparation and characterization of bioactive composites and fi bers for dental applications. Dent Mater. pii, S0109-5641(14)00154-7. DOI: 10.1016/j.dental.2014.05.022.
  • 4. Pazarlioglu, S. S., Gokce, H., & Ozyegin, S. (2014). Effect of sintering on the microstructural and mechanical properties of melagris gallopova hydroxyapatite. Biomed. Mater. Eng., 24(4), 1751–1769.
  • 5. Sanchez, M. C., Llama-Palacios, A., Fernandez, E., Figuero, E., Marin, M. J., Leon, R., Blanc, V., Herrera, D., & Sanz, M. (2014). An in vitro biofilm model associated to dental implants: Structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces. Dent. Mater. pii, S0109-5641(14)00192-4. DOI: 10.1016/j.dental.2014.07.008.
  • 6. Panduric, D. G., Juric, I. B., Music, S., Molcanov, K.,Susic, M., & Anic, I. (2014). Morphological and ultrastructural comparative analysis of bone tissue after Er:YAG laser and surgical drill osteotomy. Photomed. Laser Surg., 32(7), 401–408.
  • 7. Ziaie, F., Hajiloo, N., Alipour, A., Amraei, R., & Mehtieva, S. I. (2011). Retrospective dosimetry using synthetized nano-structure hydroxyapatite. Radiat. Prot. Dosim., 145(4), 377–384.
  • 8. Ishchenko, S. S., Vorona, I. P., Okulov, S. M., & Baran, N. P. (2002) 13C hyperfi ne interactions of CO2 in irradiated tooth enamel as studied by EPR. Appl. Radiat. Isot., 56(6), 815–819.
  • 9. Eaton, G. R., Eaton, S. S., & Salikhov, K. M. (1998). Foundations of modern EPR. Singapore: World Scientific.
  • 10. Bartosz, G. (2008). Druga twarz tlenu. Wolne rodniki w przyrodzie. Warsaw: PWN.
  • 11. Jaroszyk, F. (Ed.).(2001). Biofizyka. Warsaw: PZWL.
  • 12. Seńczuk, W. (Ed.). (2002). Toksykologia. Warsaw: PZWL.
  • 13.Akaike, T. (2001). Role of free radicals in viral pathogenesis and mutation. Rev. Med. Virol., 11, 87–101.
  • 14.Wertz, J. E., & Bolton, J. R. (1986). Electron spin resonance: Elementary theory and practical application. New York: Chapman and Hall
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6140d59e-e10e-4e41-8872-341801c8e5b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.