PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance Enhancement of a Photovoltaic Module by Passive Cooling Using Water-Based Aluminum Oxide Nano-Fluid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The performance of a PV (photovoltaic) module relies heavily on the operating temperature. The aim of the current study was to improve PV performance by passive cooling with nano-coated aluminum fins attached to the backside of the photovoltaic panels. Four identical PV panels were installed side by side for simultaneous measurements. The first one (B) is a basic PV that was used for comparison purposes, the second one (N) PV, which is coated with water-based Al2O3 nano-fluid, the third is finned PV (F), with fins being attached to its backside and the Al2O3 nano-fluid coated fins are attached to the backside of the fourth PV (FN). The hourly electrical generated power by each PV, I-V, and I_V curves for each PV were recorded and stored using I-V Checker. In addition, the backside temperature of each PV and the ambient temperature were measured on an hourly basis using K-type thermocouples; the measured temperature values were stored in a data logger. It was found that the (FN) PV gave the best performance compared to the base unit, with an increase in the generated power by 5.77%, followed by the nanocoated (N) PV with an increase of 2.14% and finally the finned (F) PV with an increase of 0.74%. Furthermore, the PV with the nano-coated fins exhibits the lower temperature 31°C, followed by the nano-coated PV, and finally the fined PV, with the backside average temperature of the basic unit being 39°C.
Słowa kluczowe
Rocznik
Strony
276--283
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • School of Engineering, Department of Mechanical Engineering, The University of Jordan, Queen Rania St, Amman 11942, Jordan
Bibliografia
  • 1. Bahaidarah H., Subhan A., Gandhidasan P., Rehman S. 2013. Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions. Energy, 59, 445–453.
  • 2. Bayrak F., Oztop H.F., Selimefendigil F. 2020. Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Conversion and Management, 212.
  • 3. Bevilacqua P., Perrella S., Cirone D., Bruno R., Arcuri N. 2021. Efficiency Improvement of Photovoltaic Modules via Back Surface Cooling. Energies, 14, 895.
  • 4. Chandrasekar M., Senthilkumar T. 2015. Experimental demonstration of enhanced solar energy utilization in flat PV (photovoltaic) modules cooled by heat spreaders in conjunction with cotton wick structures. Energy, 90, 1401–1410.
  • 5. Chandrasekar M., Senthilkumar T. 2016. Passive thermal regulation of flat PV modules by coupling the mechanisms of evaporative and fin cooling. Heat Mass Transf, 52, 1381–1391.
  • 6. Chen H., Chen X., Li S., Ding H., et al. 2014. Comparative study on the performance improvement of photovoltaic panel with passive cooling under natural ventilation. Int J Smart Grid Clean Energy, 3(4), 349–374.
  • 7. Daghigh R., Ruslan M.H., Sopian K. 2011. Advances in liquid based photovoltaic/thermal (PV/T) collectors. Renewable and Sustainable Energy Reviews, 15(8), 4156–4170.‏
  • 8. El Mays A., Ammar R., Hawa M., Akroush M., Hachem F., Khaled M., Ramadan M. 2017. Improving photovoltaic panel using finned plate of aluminum. Energy Proc, 119, 812–817.
  • 9. El Mays A., Ammar R., Hawa M., Akroush M.A., Hachem F., Khaled M., Ramadan M. 2017. Improving Photovoltaic Panel Using Finned Plate of Aluminum. Energy Procedia, 119, 812–817.
  • 10. Firoozzadeh M., Shiravi1 A.H., Shafiee M. 2019. An Experimental Study on Cooling the Photovoltaic Modules by Fins to Improve Power Generation: Economic Assessment, Iranian (Iranica). Journal of Energy and Environment, 10(2), 80–84.
  • 11. Gomaa M.R., Hammad W., Al-Dhaifallah M., Rezk H. 2020. Performance enhancement of grid-tied PV system through proposed design cooling techniques: An experimental study and comparative analysis. Sol. Energy, 211, 1110–1127.
  • 12. Grubišić-Čabo F., Nižetić S., Marco G. 2016. Photovoltaic Panels: T. A Review of the Cooling Techniques, Transactions of Famena XL, Special issue 1.
  • 13. Gyekum E.B., Praveen Kumar S., Alwan N.T., Velkin V.I., Shcheklein S.E., Yaqoob S.J. 2021. Experimental Investigation of the Effect of a Combination of Active and Passive Cooling Mechanism on the Thermal Characteristics and Efficiency of Solar PV Module. Inventions, 6, 6
  • 14. Hamdan M., Shehadeh M., Al Aboushi A., Hamdan A., Abdelhafez E. 2018. Photovoltaic Cooling Using Phase Change Material, Jordan Journal of Mechanical and Industrial Engineering, 12(3), 167–170.
  • 15. Hamdan M.A., Kardasi K.K. 2017. Improvement of photovoltaic panel efficiency using nanofluid. Int. J. of Thermal & Environmental Engineering, 14(2), 143–151.
  • 16. Hernandez-Perez J.G., Carrillo J.G., Bassam A., FlotaBanuelos M., Patino-Lopez L. 2021. Thermal performance of a discontinuous finned heatsink profile for PV passive cooling. Appl. Therm. Eng., 184, 116238.
  • 17. Khan S., Waqas A., Ahmad N., Mahmood M., Shahzad N., Sajid M.B. 2020. Thermal management of solar PV module by using hollow rectangular aluminum fins. J. Renew. Sustain. Energy, 12, 063501.
  • 18. Krauter S. 2004. Increased electrical yield via water flow over the front of photovoltaic panels. Solar energy materials and solar cells, 82(1–2), 131–137.‏
  • 19. Kumar R., Rosen M.A. 2011. A critical review of photovoltaic–thermal solar collectors for air heating. Applied Energy, 88(11), 3603–3614.‏
  • 20. Makki A., Omer S., Sabir H. 2015. Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renewable and sustainable energy reviews, 41, 658–684.‏
  • 21. Micheli L., Senthilarasu S., Reddy K.S., Mallick T.K. 2015. Applicability of silicon micro-finned heat sinks for 500x concentrating photovoltaics systems. J. Mater. Sci., 50, 5378–5388.
  • 22. Ogueke N.V., Anyanwu E.E. 2017. Review of Photovoltaic-Thermal Collectors: An Overview of the Potential beyond Experimental Testing. International Journal of Energy for a Clean Environment, 18(3).‏
  • 23. Royne A., Dey C. J., Mills D.R. 2005. Cooling of photovoltaic cells under concentrated illumination: a critical review. Solar energy materials and solar cells, 86(4), 451–483.‏
  • 24. Selimefendigil F., Bayrak F., Oztop H.F. 2018. Experimental analysis and dynamic modeling of a photovoltaic module with porous fins. Renew. Energy, 125, 193–205.
  • 25. Smith M.K., Selbak H., Wamser C.C., Day N.U., Krieske M., Sailor D.J., Rosenstiel T.N. 2014. Water cooling method to improve the performance of field-mounted, insulated, and concentrating photovoltaic modules. Journal of Solar Energy Engineering, 136(3).‏
  • 26. Tan L., Date A., Fernandes G., Singh B., Ganguly S. 2017. Efficiency Gains of Photovoltaic System Using Latent Heat Thermal Energy Storage. Energy Procedia, 110, 83–88.
  • 27. Wazwaz A., Salmi J., Bes R. 2010. The effects of nickel-pigmented aluminum oxide selective coating over aluminum alloy on the optical properties and thermal efficiency of the selective absorber prepared by alternate and reverse periodic plating technique. Energy Conversion and Management, 51(8).
  • 28. Wongwuttanasatian T., Sarikarin T., Suksri A. 2020. Performance enhancement of a photovoltaic module by passive cooling using phase change material in a finned container heat sink. Sol. Energy, 195, 47–53.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-612d9ae9-d070-4867-9b48-df023c3ab677
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.