Nafta-Gaz 2024, no. 4, pp. 202–210, DOI: 10.18668/NG.2024.04.02

# Development of the strategy for implementation of repair and restoration works in oil and gas wells

Przygotowanie strategii prowadzenia prac naprawczych i rekonstrukcyjnych w odwiertach naftowych i gazowych

Ramiz Hasanov, Tila Qasimova, Musa Kazimov

#### Azerbaijan State Oil and Industry University

ABSTRACT: The repair and restoration work implemented in inactive well stocks has led to the resolution of clustering issues based on their purpose. It has been determined that in case of clusters of accident-prone wells, the implementation of repair and restoration works and their return to the operational fund, must be carried out based on economic and technical efficiency. The corresponding analysis revealed that clusters characterizing the accident rates include issues with downhole pipes, downhole motors, tools and devices, packers, bottom hole drill pipes, cables, ropes, wires, and others types of accidents. This paper presents the accumulated results of realized RRW (repair restoration works) based on field experience for formalization and automation in developing decision-making technologies and selecting accident elimination strategy in appropriate field conditions. Various technologies have been developed for the elimination process, using appropriate equipment. Repair and restoration work for corresponding codes is proposed based on field statistical information. The economic feasibility of the obtained results and their application are classified on the basis of boundary conditions, the location of the accident object in the well, realized technology, and appropriate technical means. As a result of the analysis of SOCAR (State Oil Company of Azerbaijan Republic) fund of accident-prone wells, 24 possible options for the implementation of RRW have been identified for the aforementioned clusters. Lists of the existing tool park, functional design parameters, and technological modes necessary for each accident cluster have been determined to implement decision-making technologies.

Key words: well, elimination of accidents, repair restoration works (RRW), technology, RRW automated strategy, decision making, efficiency.

STRESZCZENIE: Prace naprawcze i rekonstrukcyjne prowadzane w nieaktywnych odwiertach eksploatacyjnych pozwoliły rozwiazać problem grupowania odwiertów w zależności od ich przeznaczenia. Ustalono, że w przypadku klastrów odwiertów narażonych na uszkodzenia, realizacja prac naprawczych i rekonstrukcyjnych oraz ich powrót do eksploatacji musi odbywać się w oparciu o efektywność ekonomiczną i techniczną. Przeprowadzona analiza wykazała, że klastry odznaczające się wysokim wskaźnikiem awaryjności obejmują awarie rur wiertniczych, silników wgłębnych, narzędzi i urządzeń, pakerów, rur wydobywczych, kabli, lin, przewodów oraz inne rodzaje awarii. Niniejszy artykuł przedstawia zgromadzone wyniki prac naprawczych i rekonstrukcyjnych w oparciu o doświadczenia terenowe, w celu formalizacji i automatyzacji opracowywania technologii decyzyjnych i wyboru strategii eliminacji awarii w odpowiednich warunkach terenowych. Opracowano różne technologie procesu eliminacji, przy użyciu odpowiedniego sprzętu. Prace naprawcze i rekonstrukcyjne wraz z odpowiadającymi im kodami zostały zaproponowane w oparciu o dane statystyczne z terenu. Możliwość wdrożenia uzyskanych wyników z ekonomicznego punktu widzenia i ich zastosowanie są klasyfikowane na podstawie warunków brzegowych określonych przez opracowane etapy logiczne. Etapy logiczne są opracowywane z wykorzystaniem informacji o parametrach terenowych, w tym warunkach odwiertu, lokalizacji obiektu podatnego na awarie w odwiercie, wdrożonej technologii i odpowiednich środkach technicznych. W wyniku analizy zestawu odwiertów SOCAR (State Oil Company of Azerbaijan Republic) podatnych na awarie zidentyfikowano 24 możliwe opcje wdrożenia prac naprawczych i rekonstrukcyjnych dla wyżej wymienionych klastrów. W celu wdrożenia technologii decyzyjnych określono listy istniejącego parku narzędzi, funkcjonalne parametry projektowe i tryby technologiczne niezbędne dla każdego klastra awarii.

Słowa kluczowe: odwiert, eliminacja awarii, prace naprawcze i rekonstrukcyjne (RRW), technologia, zautomatyzowana strategia RRW, podejmowanie decyzji, wydajność.

Corresponding author: T. Qasimova, e-mail: tagieva89@list.ru

Article contributed to the Editor: 31.07.2023. Approved for publication: 03.04.2024.

#### Introduction

The success of repair and restoration work (RRW) implemented in the relevant situation of oil and gas production depends on its information support and the technology employed. The basis of this support lies in the statistics of field experience accumulated from RRW implementations. The field-statistical data from RRW experiences serves as the basis for the formalization and automation in decision-making technology for selecting accident elimination strategies in appropriate field conditions (Hasanov, 1992). It is known that different emergency situations may arise depending on the technological operation being carried out in the well. In oil and gas field practice, various methods of accident elimination are typically employed depending on the specific situation in the well. A set of appropriate equipment is required to implement these different technologies. Field statistical information is utilized to produce repair and restoration works according to the corresponding codes for these operations. Economic feasibility of the obtained results and their application should be analyzed. For this purpose, appropriate options with positive outcomes, according to the logical scheme, must be developed (Figure 1). Drawing up a logical scheme requires consideration of field, including well parameters, accidental objects, applied technologies, and appropriate technical means.

#### **Problem Statement**

The aim of this study is to develop and investigate decision-making technologies for eliminating accidents in wells. To achieve this, a technology procedure for the decision-making process was developed, which includes processing field data on technogenic reasons for shutdown wells.

The RRW classification for eliminating these bottlenecks was provided, and the codes of RRW applicable to shutdown wells were defined. Factors characterizing well systems and the implementation of work according to the field situation were established. A list of metric parameters and design properties for oil and gas wells was analyzed to eliminate accidents with existing tools. The technology for assessment of RRW efficiency was vector defining of the well state for each RRW code determining their usage and classification. The logical decision-making scheme and the effectiveness of the implemented activities are determined by the condition of the well - the object of the accident system (Table 3) and the design and operational characteristics of the equipment used to eliminate the accident (Nifontov and Kleschcenko, 2005). Based on field experience, the well-accident facility system is characterized by the appropriate factors.

This analysis allows us to formulate a Formal Model with the corresponding state vector to classify the results of each code version of RRW implementation (Table 2).

The content of Table 4 allows us to formulate a Formal Model of each code version of RRW implementation with the corresponding state vector for classifying their results (Table 5).

#### **Discussion of results**

As can be seen from Tables 4 and 5, based on the results of the implementation experiment, 24 code variants were identified, each with a certain number of implementations characterized by a corresponding state vector. Each state vector enables classification of RRW outcomes into positive and negative and the selection of economically viable options among the positive implementations. Since the effectiveness of measures taken to eliminate accidents depends on random factors, the result of each of them is random. In this case, it is necessary to conduct numerous experiments to determine a certain regularity in order to anticipate potential RRW outcomes and to formulate precise accident elimination plans. To solve this problem, pattern recognition methods are employed (Zozulya et al., 2002). These methods involve classifying objects based on factors that determine relevant classes and satisfy the conditions of awareness. The information content of the factors selected for the study can be evaluated in different ways. For example, the information content of factors in pattern recognition, such as conditional entropy, backward divergence, dispersion measure, etc., was characterized (Hasanov et. al., 2008). Before determining a measure of awareness, factors are usually selected for study by one of the nonparametric criteria that do not require



Figure 1. Logical procedure for determining the economic efficiency of code option for RRW implementation

**Rysunek 1.** Logiczna procedura określania efektywności ekonomicznej opcji kodu przy realizacji prac naprawczych i rekonstrukcyjnych

#### Table 1. Classification of RRW implementation

Tabela 1. Klasyfikacja realizacji prac naprawczych i rekonstrukcyjnych

| Type of RRW                 |                                                                           | Accident<br>code | Type of tool used                                                   |                                                                                                             | Code<br>of working<br>tool used | Tool used                                                                                                                                                                                                           | Sequence<br>for tool using       |
|-----------------------------|---------------------------------------------------------------------------|------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                             | <ol> <li>Involving<br/>pipes</li> <li>Involving<br/>the engine</li> </ol> | 1-A<br>2-B       |                                                                     | – fishing socket                                                                                            | 01                              | K<br>KS                                                                                                                                                                                                             | 10<br>11                         |
|                             |                                                                           |                  | 1. Threaded<br>fishing<br>tools                                     | – fishing tap                                                                                               | 11                              | <ul> <li>universal tap for pro-<br/>duction well UTP</li> <li>special tap for produc-<br/>tion well STP</li> <li>universal tap for dril-<br/>ling well UTD</li> <li>special tap for connec-<br/>tion STC</li> </ul> | 12<br>13<br>14<br>15             |
|                             | 3. Involving<br>cables<br>4. Other                                        | 3-C<br>4-D       | 2. Fishing<br>tools                                                 | <ul> <li>internal pipe<br/>fishings</li> <li>external pipe<br/>fishings</li> <li>barbell fishing</li> </ul> | 02<br>12<br>22                  | Mechanical threaded<br>fishing:<br>– freed<br>– non-freed<br>– pipes up to 48 mm<br>– pipes over 48 mm                                                                                                              | 16<br>17<br>18<br>19             |
|                             |                                                                           |                  |                                                                     | <ul> <li>fishing for ECP<br/>(electric centrifu-<br/>gal pump)</li> </ul>                                   | 32                              | <ul> <li>for the flange</li> <li>for the capsulate</li> <li>for shaft</li> <li>for the cable</li> </ul>                                                                                                             | 20<br>21<br>22<br>23             |
| Elimination<br>of accidents |                                                                           |                  |                                                                     | <ul> <li>fishing for drill<br/>pipe</li> </ul>                                                              | 42                              | <ul> <li>mechanical threaded<br/>fishing</li> <li>with spiral fishing<br/>element</li> </ul>                                                                                                                        | 24<br>25                         |
|                             |                                                                           |                  |                                                                     | <ul> <li>well bottom motor<br/>fishing</li> </ul>                                                           | 52                              | <ul><li>– turbo drill</li><li>– electro drill</li></ul>                                                                                                                                                             | 26<br>27                         |
|                             |                                                                           |                  |                                                                     | - magnetic fishing                                                                                          | 62                              | <ul><li>permanent magnet</li><li>electromagnetic</li></ul>                                                                                                                                                          | 28<br>29                         |
|                             |                                                                           |                  | 3. Milling tools                                                    |                                                                                                             | 03                              | <ul> <li>bottom hole</li> <li>circular</li> <li>conical</li> <li>the pilot</li> <li>sectional and plugin</li> <li>magnetic</li> </ul>                                                                               | 30<br>31<br>32<br>33<br>34<br>35 |
|                             |                                                                           |                  | 4. Complex pipe cutter                                              |                                                                                                             | 04                              | <ul> <li>PC tubes for mechani-<br/>cal movement</li> <li>drill pipes for hydraulic<br/>movement</li> </ul>                                                                                                          | 36<br>37                         |
|                             |                                                                           |                  | 5. The set of equipment necessary for cutting the side track barrel |                                                                                                             | 05                              | <ul> <li>incision through the slit<br/>window</li> <li>incision through the<br/>circle window</li> </ul>                                                                                                            | 38<br>39                         |
|                             |                                                                           |                  | 6. Auxiliary tools                                                  |                                                                                                             | 06                              | <ul> <li>hydraulic jack screw</li> <li>spider tool</li> <li>percussion tool</li> <li>Sludge trap tool</li> </ul>                                                                                                    | 40<br>41<br>42<br>43             |

the factor scale to be divided into ranges. Based on the application of the non-parametric Wilcoxon-Mann-Whitney test for a number of code options given in the Table 2, informative factors and, according to the designed program (Figure 2), the classification functions of the results of the RRW for these codes (to solve the discriminant functions) were synthesized (Kagarmanov et. al, 2007). However, as the necessary information is collected, the availability of the algorithm and the corresponding computer program is shown in the block diagram (Figure 3), which allows, without much difficulty, to develop classification functions to evaluate the results of implementing RRW according to the appropriate code option.

|                                      | Elimination of other accidents with magnetic fishings               | D6228<br>D6229                                                       |
|--------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
|                                      | Elimination of other accidents with the second barrel               | D0539<br>D0539                                                       |
|                                      | Elimination of other accidentswith auxiliary tools                  | D0640                                                                |
|                                      | Elimination of other accidents with milling tools                   | D0330<br>D0335                                                       |
|                                      | Elimination of other accidents with pipe cutters                    | D2218<br>D2219                                                       |
|                                      | Elimination of accidents with cables for drilling the second barrel | C0538<br>C0539                                                       |
|                                      | Elimination of accidents by hooking with cables                     | C0640                                                                |
|                                      | Elimination of accidents with cable holders                         | C3223                                                                |
|                                      | Elimination of accidents with percussion tool                       | B0642                                                                |
|                                      | Elimination of wells with engines of side track barrel              | B0538<br>B0539                                                       |
|                                      | Elimination of accidents with a milling engine                      | B0330<br>B0331<br>B0332<br>B0333<br>B0333<br>B0334                   |
|                                      | Elimination of accidents with turbo drill and electro drill         | B5226<br>B5227                                                       |
|                                      | qmuq lagufitnesseries an electriccentrifugal pump                   | B3220<br>B3221<br>B3222<br>B3223<br>B3223                            |
|                                      | Elimination of accidents with the second barrel                     | A0538<br>A0539                                                       |
| kcyjnych                             | Elimination of accidents with auxiliary tools                       | A0641<br>A0642                                                       |
| rekonstrul                           | Elimination of accidents with pipe cutters                          | A0437<br>A0437                                                       |
| Tabela 2. Opcje prac naprawczych i r | Elimination of accidents with millim guilling machines              | A0330<br>A0331<br>A0332<br>A0333<br>A0333                            |
|                                      | Elimination of accidents with fishings                              | A0216<br>A1216<br>A0217<br>A1217<br>A1217<br>A4217<br>A4217<br>A4217 |
|                                      | Elimination of accidents with pipe fishing taps                     | A1112<br>A1113<br>A1114<br>A1115<br>A1115                            |
|                                      | Elimination of accidents with pipe fishing sockets                  | A0111<br>A0111                                                       |

 Table 2. Repair and restoration works options

 Table 3. Oncie was narrowers i reference

# **Table 3.** Data of well system – accident object**Tabela 3.** Dane systemu odwiertu – obiekt awarii

| Nº | Labeling of factors                                                         | Xi                 |
|----|-----------------------------------------------------------------------------|--------------------|
| 1  | Well diameter                                                               | X1                 |
| 2  | Well wall condition (open barrel)                                           | X2                 |
| 3  | Well depth                                                                  | X3                 |
| 4  | Location of the object in the well                                          | X4                 |
| 5  | Location of accident object in the barrel well                              | X5                 |
| 6  | Tackiness degree                                                            | $X_6$              |
| 7  | Determination of oil and gas occurrence                                     | X <sub>7</sub>     |
| 8  | Geometric dimensions of accident object                                     | X <sub>8</sub>     |
| 9  | End of the accident object                                                  | X9                 |
| 10 | Physio-mechanical properties of the accident object                         | X <sub>10</sub>    |
| 11 | Parameters characterizing the design and operational properties of the tool | $X_{11}\ldots X_n$ |

#### Table 4. Design and constructive characteristics of tools

#### Tabela 4. Charakterystyka projektowa i konstrukcyjna narzędzi

| NG  | Teel                           | Parameters according to ISSN                                                                                                                                                                                                                                                                      |                                                                          |  |  |  |
|-----|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|
| 145 | 1001                           | Naming                                                                                                                                                                                                                                                                                            | Marking                                                                  |  |  |  |
| 1   | Fishing socket (K)             | <ol> <li>Internal diameter</li> <li>Taper of the fishing thread</li> <li>Length of the fishing thread</li> </ol>                                                                                                                                                                                  | $\begin{array}{c}X_{11}\\X_{12}\\X_{13}\end{array}$                      |  |  |  |
| 2   | Fishing socket (KC)            | <ul><li>4. Number of longitudinal grooves for chip exit</li><li>5. Maximum load capacity</li></ul>                                                                                                                                                                                                | $egin{array}{c} X_{14} \ X_{15} \end{array}$                             |  |  |  |
| 3   | Fishing tap                    | <ul> <li>6. Tool weight</li> <li>7. Initial axial load</li> <li>8. End axial load</li> <li>9. Tool rotation speed</li> <li>10. Consumption of washing liquid</li> </ul>                                                                                                                           | $egin{array}{c} X_{16} \ X_{17} \ X_{18} \ X_{19} \ X_{20} \end{array}$  |  |  |  |
| 4   | Released pipe fishing          | <ol> <li>Diameter of internal centering device</li> <li>Mechanical indicators of the thread (hardness after quenching)</li> <li>Distance from the end of the funnel CP to the end of the tap</li> </ol>                                                                                           | $egin{array}{c} X_{21} \ X_{22} \ X_{23} \end{array}$                    |  |  |  |
| 5   | Non-releasable pipe<br>fishing | <ul><li>14. Size of the approach (distance from the end of the tap to the place of its attachment to the tool)</li><li>15. Number of mechanical threaded fishing</li><li>16. Number of level parts in the catching mechanism</li><li>17. Hardness of the surface of the fishing sockets</li></ul> | X <sub>24</sub><br>X <sub>25</sub><br>X <sub>26</sub><br>X <sub>27</sub> |  |  |  |
| 6   | Fishing with spiral handle     | <ul><li>18. Length of fishing sockets steps</li><li>19. Angle of coverage of objects with box taps</li><li>20. Length of the fishing sockets</li><li>21. Diameter with fishing sockets closed</li><li>22. Diameter when holding elements</li></ul>                                                | $egin{array}{c} X_{28} \ X_{29} \ X_{30} \ X_{31} \ X_{32} \end{array}$  |  |  |  |
| 7   | External milling machine       | <ul><li>23. Material of the tool housing</li><li>24. Diameter of the longitudinal channel of the liquid flow</li><li>25. Bevel angle of the surface of fishing sockets</li></ul>                                                                                                                  | X <sub>33</sub><br>X <sub>34</sub><br>X <sub>35</sub>                    |  |  |  |
| 8   | Circular milling               | <ul><li>26. Axial load of the tool during pipes opening</li><li>27. Torque</li><li>28. Internal diameter</li></ul>                                                                                                                                                                                | X <sub>36</sub><br>X <sub>37</sub><br>X <sub>38</sub>                    |  |  |  |
| 9   | Cone milling machine           | <ul><li>29. Taper of screw thread</li><li>30. Length of screw thread</li><li>31. Number of views</li><li>32. Number of turns</li><li>33. Type of reinforcement</li></ul>                                                                                                                          | $egin{array}{c} X_{39} \ X_{40} \ X_{41} \ X_{42} \ X_{43} \end{array}$  |  |  |  |
| 10  | Pilot milling machine          | <ul><li>34. Height of reinforcement</li><li>35. Number of washing channel</li><li>36. Scheme of the arrangement of channels</li></ul>                                                                                                                                                             | $\begin{array}{c} X_{44} \\ X_{45} \\ X_{46} \end{array}$                |  |  |  |

#### cont. Table 4/cd. Tabela 4

| NG  | Tool                                                             | Parameters according to ISSN                                                                                                                                                                                                          |                                                                                           |  |  |  |
|-----|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|
| JNG |                                                                  | Naming                                                                                                                                                                                                                                | Marking                                                                                   |  |  |  |
| 11  | Sectional<br>and plug-in milling                                 | <ul> <li>37. Tool inner diameter</li> <li>38. Internal screw pitch</li> <li>39. Taper of the milling tools</li> <li>40. Ratio of the length of the tool to the length of the conical part</li> <li>41. Tip diameter</li> </ul>        | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |  |  |  |
| 12  | Magnetic milling                                                 | <ul> <li>42. Tip length</li> <li>43. Number of incisors</li> <li>44. Working pressure for bringing the claws into working condition</li> <li>45. Pump supply</li> <li>46 Arrangement of magnets in the grappling mechanism</li> </ul> | $\begin{array}{c} X_{52} \\ X_{53} \\ X_{54} \\ X_{55} \\ X56 \end{array}$                |  |  |  |
| 13  | Complex pipe cutter                                              | <ul><li>47. Number of magnets in the grappling mechanism</li><li>48. Material for production of magnets</li><li>49. Load carrying capacity of magnets</li></ul>                                                                       | $egin{array}{c} X_{57} \ X_{58} \ X_{59} \end{array}$                                     |  |  |  |
| 14  | Hydraulic jack                                                   | <ul><li>50. Positioning levels of magnets in the holding mechanism</li><li>51. Design of the braking mechanism</li><li>52 Specific load weight</li></ul>                                                                              | $\begin{bmatrix} X_{60} \\ X_{61} \\ X_{62} \end{bmatrix}$                                |  |  |  |
| 15  | Mechanisms for re-<br>leasing seized pipes                       | <ul><li>53. Length of the rod of incisors</li><li>54. Diameter of the rod of incisors</li></ul>                                                                                                                                       | X <sub>63</sub><br>X <sub>64</sub>                                                        |  |  |  |
| 16  | Fishing for rods                                                 | <ul><li>55. Length of the cylinder of the jack</li><li>56. Number of hydraulic anchors</li></ul>                                                                                                                                      | X <sub>65</sub><br>X <sub>66</sub>                                                        |  |  |  |
| 17  | Fishing for electric centrifugal pump                            | <ul><li>57. Armature extension pressure</li><li>58. Pressure of disruption of object</li></ul>                                                                                                                                        | X <sub>67</sub><br>X <sub>68</sub>                                                        |  |  |  |
| 18  | Fishing for the ho-<br>using of the electric<br>centrifugal pump | <ul><li>59. Number of blows before mastering</li><li>60. Weight of the hammer</li><li>61. Load capacity</li></ul>                                                                                                                     | $egin{array}{c} X_{69} \ X_{70} \ X_{71} \end{array}$                                     |  |  |  |
| 19  | Fishing flange                                                   | 62. Collet diameter<br>63. Number of tiers                                                                                                                                                                                            | $\begin{array}{c} X_{72} \\ X_{73} \end{array}$                                           |  |  |  |
| 20  | Fishing shaft                                                    | <ul><li>64. Distance between bars of individual tiers</li><li>65. Dimensions of the catcher auger</li></ul>                                                                                                                           | X <sub>74</sub><br>X <sub>75</sub>                                                        |  |  |  |
| 21  | Fishing for drill pipes                                          | <ul><li>66. Dimensions of spring</li><li>67. Number of collet fingers</li><li>68. Collet feather length</li></ul>                                                                                                                     | $\begin{array}{c c} X_{76} \\ X_{77} \\ X_{78} \end{array}$                               |  |  |  |
| 22  | Fishing for turbine drill                                        | <ul><li>69. Spring dimensions</li><li>70. Number of grips</li><li>71. Taper of funnel</li></ul>                                                                                                                                       | $\begin{array}{ c c c c c }\hline & X_{79} \\ & X_{80} \\ & X_{81} \\ \hline \end{array}$ |  |  |  |
| 23  | Fishing for electric drills                                      | <ul><li>72. Dimensions of the spring lantern</li><li>73. Length of receiving tube</li><li>74. Principle of action (articulated or non-articulated)</li></ul>                                                                          | $egin{array}{c} X_{82} \\ X_{83} \\ X_{84} \end{array}$                                   |  |  |  |
| 24  | Fishing lines                                                    | <ul><li>75. Manufacturing cost of the tool</li><li>76. The result of work with the tool</li><li>77. Cost-effectiveness of the tool</li></ul>                                                                                          | $X_{85}$<br>$X_{86}$<br>$X_{87}$                                                          |  |  |  |

#### Table 5. State vectors of code options

Tabela 5. Wektory stanu dla opcji kodowych

| Nº | Tool                    | Factors                                                                          |
|----|-------------------------|----------------------------------------------------------------------------------|
| 1  | Fishing socket (K)      | $X_1 - X_{10}, X_{11} - X_{20}, X_{85} - X_{87}$                                 |
| 2  | Fishing socket (KC)     | "" ""                                                                            |
| 3  | Fishing tap             | $X_1 - X_{10}, X_{11} - X_{24}, X_{85} - X_{87}$                                 |
| 4  | Released tube fishing   | $X_1 - X_{10}, X_{16}, X_{20}, X_{25} - X_{35}, X_{11}, X_{85} - X_{87}$         |
| 5  | Unreleased tube fishing | $X_1 - X_{10}, X_{16}, X_{20}, X_{25} - X_{37}, X_{85} - X_{87}$                 |
| 6  | Spiral tube fishing     | $X_1 - X_{10}, X_{11}, X_{16}, X_{20}, X_{37} - X_{42}, X_{85} - X_{87}$         |
| 7  | Circular milling cutter | $X1 - X_{10}, X_{11}, X_{16}, X_{18} - X_{20}, X_{43} - X_{48}, X_{85} - X_{87}$ |

#### cont. Table 5/cd. Tabela 5

| Nº | Tool                                          | Factors                                                                                                                         |
|----|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 8  | External milling machine                      | $X_1 - X_{10}, X_{11}, X_{16}, X_{18} - X_{20}, X_{43} - X_{48}, X_{85} - X_{87}$                                               |
| 9  | Conical milling cutter                        | $X_1 - X_{10}, X_{11}, X_{16}, X_{18} - X_{20}, X_{43} - X_{48}, X_{85} - X_{87}$                                               |
| 10 | Pilot milling machine                         | $X_1 - X_{10}, X_{11}, X_{16}, X_{18} - X_{20}, X_{43}, X_{51}, X_{52}, X_{85} - X_{87}$                                        |
| 11 | Sectional and seated milling machine          | $X_1 - X_{10}, X_{11}, X_{16}, X_{18}, X_{53} - X_{55}, X_{85} - X_{87}$                                                        |
| 12 | Magnetic milling machine                      | $X_1 - X_{10}, X_{11}, X_{16}, X_{56} - X_{60}, X_{85} - X_{87}$                                                                |
| 13 | Complex pipe cutter                           | $X_1 - X_{10}, X_{11}, X_{16}, X_{19}, X_{20}, X_{55}, X_{61} - X_{64}, X_{85} - X_{87}$                                        |
| 14 | Hydraulic jack                                | $X_1 - X_{10}, X_{11}, X_{16}, X_{65} - X_{68}, X_{85} - X_{87}$                                                                |
| 15 | Impact of pathogens (impact tool)             | $X_1 - X_{10}, X_{11}, X_{16}, X_{69} - X_{11}, X_{85} - X_{87}$                                                                |
| 16 | Fishing for barbells                          | $X_1 - X_{10}, X_{11}, X_{16}, X_{25} - X_{25}, X_{71}, X_{72}, X_{85} - X_{87}$                                                |
| 17 | Fishing (cable) for electric centrifugal pump | $X_1 - X_{10}, X_{11}, X_{16}, X_{25}, X_{27}, X_{29}, X_{71}, X_{85} - X_{87}$                                                 |
| 18 | Fishing for electric centrifugal pump housing | $X_1 - X_{10}, X_{16}, X_{71}, X_{76} - X_{78}, X_{85} - X_{87}$                                                                |
| 19 | Fishing for flange                            | $X_1 - X_{10}, X_{11}, X_{71}, X_{76} - X_{78}, X_{85} - X_{87}$                                                                |
| 20 | Fishing shaft                                 | $X_1 - X_{10}, X_{11}, X_{16}, X_{25}, X_{27}, X_{29}, X_{25}, X_{35}, X_{43}, X_{44}, X_{47}, X_{71}, X_{79}, X_{85} - X_{87}$ |
| 21 | Fishing for drill pipes                       | $X_1 - X_{10}, X_{11}, X_{16}, X_{25}, X_{27} - X_{25}, X_{33} - X_{35}, X_{71}, X_{80}, X_{85} - X_{87}$                       |
| 22 | Fishing for turbine excavators                | $X_1 - X_{10}, X_{11}, X_{16}, X_{18} - X_{20}, X_{43}, X_{44}, X_{47}, X_{80}, X_{85} - X_{87}$                                |
| 23 | Fishing for electric drills                   | $X_1 - X_{10}, X_{11}, X_{16}, \overline{X_{18} - X_{20}, X_{43}, X_{44}, X_{47}, X_{71}, X_{83}, X_{85} - X_{87}}$             |
| 24 | Fishing grab hooks                            | $X_1 - X_{10}, X_{11}, X_{16}, X_{71}, X_{84} - X_{87}$                                                                         |

|   |                                                                                                     |                   | Figure 2                                                                                                                                             |  |                                                           |                                                                                                                                                                                                                                                 |
|---|-----------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                     | Cutting tools     | informative factors<br>X <sub>1-10</sub> ; X <sub>11-24</sub> ; X <sub>85-87</sub>                                                                   |  |                                                           | A well planned for the implementation                                                                                                                                                                                                           |
|   | Accidents<br>- involving well<br>pipes                                                              | Fishing tools     | informative factors<br>X <sub>1-10</sub> ; X <sub>16</sub> ; X <sub>20</sub> ; X <sub>25-37</sub> ; X <sub>38-42</sub> ; X <sub>85</sub>             |  |                                                           |                                                                                                                                                                                                                                                 |
|   |                                                                                                     | Destructive tools | informative factors<br>X <sub>1-10</sub> ; X <sub>11</sub> ; X <sub>16-20</sub> ; X <sub>44-52</sub> ; X <sub>85-87</sub>                            |  | Sum<br>of informative                                     | 1. Designation of the well<br>2. Method of performing                                                                                                                                                                                           |
|   | Involving well<br>engines, devices,<br>– packers,<br>and accidents<br>involving<br>construction BHA | Cutting tools     | informative factors<br>X <sub>1-10</sub> ; X <sub>11-24</sub> ; X <sub>85-87</sub>                                                                   |  | factors,<br>predetermination<br>of RRW<br>by code variant | <ul> <li>technological operations</li> <li>3. Condition and depth<br/>of the well wall</li> <li>4. Location of the object<br/>in the well</li> <li>5. The diameter<br/>of the well in the area<br/>where the facility<br/>is located</li> </ul> |
| - |                                                                                                     | Fishing tools     | informative factors<br>X <sub>1-10</sub> ; X <sub>16</sub> ; X <sub>20</sub> ; X <sub>25-37</sub> ; X <sub>38-42</sub> ; X <sub>85</sub>             |  |                                                           |                                                                                                                                                                                                                                                 |
|   |                                                                                                     | Destructive tools | informative factors<br>X <sub>1-10</sub> ; X <sub>11</sub> ; X <sub>16-20</sub> ; X <sub>44-52</sub> ; X <sub>85-87</sub>                            |  |                                                           |                                                                                                                                                                                                                                                 |
|   |                                                                                                     | Cutting tools     | informative factors                                                                                                                                  |  |                                                           | 6. The form<br>of the determination<br>of the accident object                                                                                                                                                                                   |
| - | Cables, accidents<br>— involving ropes<br>and wires                                                 | Fishing tools     | informative factors<br>X <sub>1-10</sub> ; X <sub>11</sub> ; X <sub>16</sub> ; X <sub>27</sub> ; X <sub>29</sub> ; X <sub>71</sub> ; X <sub>85</sub> |  |                                                           | <ol> <li>7. End of the accident<br/>object</li> <li>Geometric dimensions</li> <li>8. Physico-mechanical<br/>composition of the<br/>material at the end</li> </ol>                                                                               |
|   |                                                                                                     | Destructive tools | informative factors<br>                                                                                                                              |  |                                                           |                                                                                                                                                                                                                                                 |
|   |                                                                                                     | Cutting tools     | informative factors                                                                                                                                  |  |                                                           | of the object<br>9. Object occupancy rate                                                                                                                                                                                                       |
|   | <ul> <li>Other accidents</li> </ul>                                                                 | Fishing tools     | informative factors<br>X <sub>1-10</sub> ; X <sub>11</sub> ; X <sub>16</sub> ; X <sub>56</sub> ; X <sub>60</sub> ; X <sub>85-87</sub>                |  |                                                           | and gas occurrence<br>11. Amount of early                                                                                                                                                                                                       |
|   |                                                                                                     | Destructive tools | informative factors<br>X <sub>1-10</sub> ; X <sub>11</sub> ; X <sub>16-20</sub> ; X <sub>43</sub> ; X <sub>49-56</sub> ; X <sub>85</sub>             |  |                                                           | implementation<br>of repairs                                                                                                                                                                                                                    |

### 04/2024



Figure 2. Extended logic diagram of method selection for RRW implementation

Rysunek 2. Rozszerzony schemat logiczny wyboru metody realizacji prac naprawczych i rekonstrukcyjnych



Figure 3. Block diagram of the discriminant function method Rysunek 3. Schemat blokowy metody funkcji dyskryminacyjnej

#### Conclusions

- 1. Based on field-specific factors, accident data from selected production wells are categorized into ranges using a nonparametric criterion for study.
- 2. By employing the non-parametric Wilcoxon-Mann-Whitney test for a number of code options, different decision rules can be obtained for the analyzed database informative factors. Subsequently, the classification functions of the results of the RRW for these codes were synthesized according to the developed program.
- 3. This algorithm facilitates the development of classification functions to evaluate the results of implementing RRW according to the appropriate code option with minimum difficulty.

#### References

Hasanov R.A., 1992. The adoption of scientific and practical solutions for the production of repair and restoration work on the emergency



Prof. Ramiz HASANOV, Ph.D. Professor at the Department of Oil Mechanics Azerbaijan State Oil and Industry University 16/21 Azadliq Ave, AZ1010, Baku, Azerbaijan E-mail: ramiz.hasanov52@gmail.com



idle well stock, Abstract of the dissertation for the degree of Doctor of Science: Baku, Azerbaijan State Oil Academy, 36.

- Hasanov R.A., Hasanov A.R., Jamalov V.R., 2008. Application of fuzzy logic methods for effective management of rehabilitation of breakdown wells. 6th International Symposium on Intelligent and manufacturing systems, "Features, Strategies and innovation", October 14–17, Sakarya, Tukey, 66–71.
- Nifontov Yu.A., Kleshchenko I.I., 2005. Repair of oil and gas wells. Handbook (part I, II). Professional, Saint Petersburg, 1-1460.
- Kagarmanov I., Dmitriev A.Yu., 2007. Repair of oil and gas wells. TPU- Tomsk, 1-323.
- Zozulya G.P., Kleshchenko I.I., Geikhman M.G., Chabaev L.U., 2002. Theory and practice of choosing technologies and materials for repair and insulation works in oil and gas wells. TyumGNGU, Tyumen, 1–137.

#### Tila QASIMOVA, M.Sc.

Doctoral student at the Department of Oil Mechanics Azerbaijan State Oil and Industry University 16/21 Azadliq Ave, AZ1010, Baku, Azerbaijan E-mail: tagieva89@list.ru



Musa KAZIMOV. Ph.D. candidate Assistant Professor at the Department of Oil Mechanics Azerbaijan State Oil and Industry University 16/21 Azadliq Ave, AZ1010, Baku, Azerbaijan E-mail: musa.kazimov50@mail.ru

#### OFERTA BADAWCZA ZAKŁADU SYMULACJI ZŁÓŻ WĘGLOWODORÓW I PMG

- sporządzanie ilościowych charakterystyk złóż naftowych (konstruowanie statycznych modeli złożowych);
- analizy geostatystyczne dla potrzeb projektowania modeli złóż naftowych, w tym PMG i wielofazowych obliczeń wolumetrycznych;
- konstruowanie dynamicznych symulacyjnych modeli złóż i ich kalibracja;
- wszechstronne badania symulacyjne dla potrzeb:
  - weryfikacji zasobów płynów złożowych,
  - x wtórnych metod zwiększania wydobycia (zatłaczanie gazu lub wody, procesy WAG, procesy wypierania mieszającego, oddziaływanie chemiczne),
  - optymalizacji rozwiercania i udostępniania złóż, Ц
  - Ц prognozowania złożowych i hydraulicznych (w tym termalnych) charakterystyk odwiertów (w szczególności poziomych) dla celów optymalnego ich projektowania,
  - sekwestracji CO<sub>2</sub>; Ц
- projektowanie, realizacja i wdrażanie systemów baz danych dla potrzeb górnictwa naftowego.





INSTYTUT NAFTY I GAZU – Państwowy Instytut Badawczy

Adres: ul. Armii Krajowej 3, 38-400 Krosno Kierownik: dr inż. Piotr Łetkowski Telefon: 13 434 96 29 Faks: 13 436 79 71 E-mail: letkowski@inig.pl