PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pulse powered turbine engine concept – numerical analysis of influence of different valve timing concepts on thermodynamic performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work is an attempt to create the concept of an engine that will combine the benefits of a pulse powered piston engine and continuously powered turbine engine. The paper focuses on the subject of pressure gain combustion (PGC). A turbine engine concept with stationary constant volume combustors, working according the Humphrey cycle, is presented. Its work has to be controlled by valve timing system. Four different valve timing concepts were analyzed. Their influence on thermodynamic performance of engine was evaluated. Different valve constructions were researched by means of 3D numerical computational fluid dynamics (CFD) simulation.
Rocznik
Strony
373--382
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
autor
  • Institute of Machine Design Fundamentals, Warsaw University of Technology, 84 Narbutta St., 02-524 Warsaw, Poland
autor
  • Institute of Machine Design Fundamentals, Warsaw University of Technology, 84 Narbutta St., 02-524 Warsaw, Poland
Bibliografia
  • [1] Podręczny poradnik mechanika, Podstawowe informacje o turbinach gazowych, [in Polish]: http://www.softdis.pl/
  • [2] http://autowiedza.republika.pl/proces_spalania.html.
  • [3] M. Szlachetka, K. Pietrykowski, and P. Magryta, “Badania symulacyjne bilansu cieplnego silnika Diesla przeznaczonego do napędu lekkiego śmigłowca”, Logistyka 6, (2014) [in Polish].
  • [4] W. Ostapski, T. Wierzchoń, J. Rudnicki, and S. Dowkontt, “Simulation and bench studies of the constructively and technologically modernized high performance piston aircraft engine”, Bull. Pol. Ac.: Tech. 65 (1), (2017), doi: 10.1515/bpasts-2017‒0012.
  • [5] ANSYS Fluent, www.ansys.com/Products/Fluids/ANSYS-Fluent.
  • [6] “New Developments in Combustion Technology Part II: Step change in efficiency”, Princeton-CEFRC, 2012.
  • [7] “Review of recent developments in wave rotor combustion technology”, Journal of Propulsion and Power 25 (4), 833‒844 (2009). http://dx.doi.org/10.2514/1.34081
  • [8] J. Hwang, Y. Park, C. Bae, J. Lee, and S. Pyo, “Fuel temperature influence on spray and combustion characteristics in a constant volume combustion chamber”, Fuel 160, 424–433, (2015), https://doi.org/10.1016/j.fuel.2015.08.004
  • [9] M. Razi Nalim, “A review of wave rotor and its applications”, J. Eng. Gas Turbines Power 128(4), 717‒735 (2006).
  • [10] J. Piechna, “Micro ring-engine numerical fluid dynamics analysis”, Archivum Combustionis 34 (1), 1‒26 (2014).
  • [11] K. Kurec, J. Piechna, and N. Müller, “Numerical investigation of the micro radial disk internal combustion engine”, Archivum Combustionis 34 (1), 1‒25, (2014).
  • [12] K. Kurec, J. Piechna, and K. Gumowski, “Investigations on unsteady flow within a stationary passage of a pressure wave exchanger, by means of PIV measurements and CFD calculations”, Applied Thermal Engineering 112, 610–620, (2017), https://doi.org/10.1016/j.applthermaleng. 2016.10.142.
  • [13] H. Holzwarth and E. Junghans, “Improvements in Gas Turbines,” U.K. Patent No. 20, 546, 1906.
  • [14] A. Griepe, “Gas Turbine-Engine,” U.S. Patent No. 910, 665, 1909.
  • [15] H. Hagen, “Constant Volume Combustion Gas Turbine with Intermittent Flows,” U.S. Patent No. 3, 877, 219, 1975.
  • [16] A. Gertz, “Gas Turbine Engine,” U.S. Patent No. 4, 241, 576, 1980.
  • [17] J. Szargut, Termodynamika Techniczna, Wydawnictwo naukowe PWN, Warszawa 1991 [in Polish].
  • [18] “Gasoline could match diesel efficiency by 2025: increased investment will improve spark ignition’s efficiency”, Automotive Engineer 5(1), (2015).
  • [19] www.geaviation.com/marine/engines/commercial/25-mw-engine.
  • [20] ANSYS FLUENT User’s Guide.
  • [21] K. Rajesh, J. Siddhant, V. Gaurav, and K. Avinash, “Laser ignition and flame kernel characterization of HCNG in a constant volume combustion chamber”, Fuel 190, 318–327 (2017), doi.org/10.1016/j.fuel.2016.11.003.
  • [22] L. Labarrerea, T. Poinsot, A. Dauptaina, F. Duchainea, M. Bellenouec, and B. Boust, “Experimental and numerical study of cyclic variations in a constant volume combustion chamber”, Combustion and Flame 172, 49–61 (2016).
  • [23] S.-W. Lee1, H.-S. Lee, Y.-J. Park, and Y.- S. Cho, “Combustion and emission characteristics of HCNG in a constant volume chamber”, International Journal of Hydrogen Energy 37 (1), 682–690 (2012), https://doi.org/10.1016/j.ijhydene.2011.09.071.
  • [24] N. Barinyima, P. Pericles, and N. Theoklis, “Performance assessment of simple and modified cycle turboshaft gas turbin”, Propulsion and Power Research 2 (2), 96–106 (2013), https://doi.org/10.1016/j.jppr.2013.04.00.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-612547b2-6ac2-496c-b9d3-6f8b09fb040c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.