PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

TIG Welding of Ti6Al4V: Effect of Ti6Al4V ELI as Filler Metal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Titanium and its alloys have significant uses in the biomedical, chemical, and aerospace industries. In this article, the current and gas flow rates were varied using Taguchi’s experiment design. The mechanical properties of the welded joint made using tungsten inert gas (TIG) welding and Ti6Al4V ELI as filler metal was characterized using the microstructure, microhardness, and tensile strength. The joint was classified into three regions, namely, fusion zone (FZ), heat affected zone (HAZ), and base metal (BM). Results show martensitic microstructure within the fusion zone (FZ) and the heat affected zone (HAZ), which resulted in an increased hardness within the fusion and heat affected zone.
Słowa kluczowe
Twórcy
  • University of Ilorin, Department of Mechanical Engineering, P.M.B. 1515, Ilorin, Nigeria
  • University of Johannesburg, Department oF Mechanical Engineering Science, P.O. Box 524, Johannesburg, South Africa
  • University of Ilorin, Department oF Materials and Metallurgical Engineering, P.M.B. 1515, Ilorin, Nigeria
  • University of Johannesburg, Department oF Mechanical Engineering Science, P.O. Box 524, Johannesburg, South Africa
  • Nile University of Nigeria, Department of Mechanical Engineering, 900001, Nigeria
  • Landmark University, Department of Mechanical Engineering, 252201, Nigeria
  • University of Northumbria, Department of Mechanical and Construction Engineering, Newcastle, NE1 8ST, United Kingdom
  • University of Northumbria, Department of Mechanical and Construction Engineering, Newcastle, NE1 8ST, United Kingdom
Bibliografia
  • [1] P. Omoniyi, M. Mahamood, T. Jen, E. Akinlabi, TIG welding of Ti6Al4V alloy: Microstructure, fractography, tensile and microhardness data, Data Br. 38, 107274 (2021). DOI: https://doi.org/10.1016/j.dib.2021.107274
  • [2] P.O. Omoniyi, E.T. Akinlabi, R.M. Mahamood, T.C. Jen, Corrosion Resistance of Heat Treated Ti6Al4V in NaCl, Chem. Data Collect. (2021). DOI: https://doi.org/10.1016/j.cdc.2021.100780
  • [3] P.O. Omoniyi, E.T. Akinlabi, R.M. Mahamood, Microstructural and Mechanical Properties of Laser Deposited Ti-6Al-4V Alloy: A Review, in: 4th Int. Conf. Eng. A Sustain. World, (2021). DOI: https://doi.org/10.1088/1757-899x/1107/1/012110
  • [4] S. Dewangan, R. Ranjan, S. Chattopadhyaya, Preliminary Investigations of Structure and Properties of TIG Welded Ti-6Al-4V Alloy, Adv. Sci. Technol. Res. J. 15, 156-165 (2021).
  • [5] P.O. Omoniyi, R.M. Mahamood, N. Arthur, S. Pityana, S.A. Akinlabi, Y. Okamoto, M.R. Maina, E.T. Akinlabi, Investigation and optimization of heat treatment process on tensile behaviour of Ti6Al4V alloy, Mater. Werkstofftech. 52, 1057-1063 (2021). DOI: https://doi.org/10.1002/mawe.202000314
  • [6] P.O. Omoniyi, E.T. Akinlabi, R.M. Mahamood, Heat Treatments of Ti6Al4V Alloys for Industrial Applications: an Overview, in: 4th Int. Conf. Eng. A Sustain. World, (2021). DOI: https://doi.org/10.1088/1757-899X/1107/1/012094
  • [7] C. Prakash, S. Singh, M. Singh, M.K. Gupta, M. Mia, A. Dhanda, Multi-objective parametric appraisal of pulsed current gas tungsten arc welding process by using hybrid optimization algorithms, Int. J. Adv. Manuf. Technol. 101, 1107-1123 (2019). DOI: https://doi.org/10.1007/s00170-018-3017-3
  • [8] P.O. Omoniyi, R.M. Mahamood, N. Arthur, S. Pityana, S. Skhosane, Y. Okamoto, T. Shinonaga, M.R. Maina, T.C. Jen, E.T. Akinlabi, Joint integrity evaluation of laser beam welded additive manufactured Ti6Al4V sheets, Sci. Rep. 12, 1-9 (2022). DOI: https://doi.org/10.1038/s41598-022-08122-2
  • [9] P.O. Omoniyi, R.M. Mahamood, E.T. Akinlabi, Impact of Process Parameters of Laser Welding on the Mechanical Properties of Ti6Al4V: A Review, J. Chem. Technol. Metall. 56, 1074-1081 (2021).
  • [10] P. Omoniyi, R. Mahamood, N. Arthur, S. Pityana, S. Skhosane, Y. Okamoto, M. Maina, T. Jen, E. Akinlabi, Laser Butt Welding of Thin Ti6Al4V Sheets : Effects of Welding Parameters, J. Compos. Sci. 5, 1-9 (2021). DOI: https://doi.org/10.3390/jcs5090246
  • [11] A.B. Short, Gas tungsten arc welding of α + β titanium alloys: A review, Mater. Sci. Technol. 25, 309-324 (2009). DOI: https://doi.org/10.1179/174328408X389463
  • [12] P.O. Omoniyi, R.M. Mahamood, N. Arthur, S. Pityana, S.A. Akinlabi, S. Hassan, Y. Okamoto, M.R. Maina, E.T. Akinlabi, Investigation of the Mechanical and Microstructural Properties of TIG Welded Ti6Al4V Alloy, in: Adv. Mater. Sci. Eng. Sel. Artic. From ICMMPE 2020, pp. 111-118, (2021).
  • [13] N. Hoye, H. Li, J. Norrish, R. Dippenaar, Post-weld atmospheric contamination of gas tungsten arc deposited welds in commercially pure and Ti-6A1-4V titanium alloys, in: Ti 2011 - Proc. 12th World Conf. Titan., pp. 1629-1633 (2012).
  • [14] P.O. Omoniyi, R.M. Mahamood, T. Jen, E.T. Akinlabi, an Overview of TIG Welding of Ti6Al4V: Recent Developments, Rev. Des Compos. Des Matériaux Avancés-Journal Compos. Adv. Mater. 31, 265-274 (2021).
  • [15] M. Balasubramanian, Statistical analysis of tensile strength and elongation of pulse TIG welded titanium alloy joints using Weibull distribution, Cogent Eng. 3 (2016). DOI: https://doi.org/10.1080/23311916.2016.1239298
  • [16] S. Reddy Vempati, K. Brahma Raju, K. Venkata Subbaiah, Optimization of Welding Parameters of Ti 6Al 4v Cruciform shape Weld joint to Improve Weld Strength Based on Taguchi Method, Mater. Today Proc. 5, 4948-4957 (2018). DOI: https://doi.org/10.1016/j.matpr.2017.12.072
  • [17] F. Karimzadeh, A. Ebnonnasir, A. Foroughi, Artificial neural network modeling for evaluating of epitaxial growth of Ti6Al4V weldment, Mater. Sci. Eng. A. 432, 184-190 (2006). DOI: https://doi.org/10.1016/j.msea.2006.05.141
  • [18] R. Kumar, S. Chattopadhyaya, S. Kumar, Prediction of bead reinforcement height and width of Gas Tungsten Arc Welded bead-on plate joints using Artificial Neural Network, in: 5th int. 26th All India Manuf. Technol. Des. Res. Conf., Assam, pp. 1-6, (2014).
  • [19] V. Kalaichelvi, R. Karthikeyan, D. Sivakumar, Analysis of gas metal arc welding process using GA tuned fuzzy rule based system, J. Intell. Fuzzy Syst. 25, 429-440 (2013). DOI: https://doi.org/10.3233/IFS-120650
  • [20] D.K. Gope, U. Kumar, S. Chattopadhyaya, S. Mandal, Investigation into the TIG welded joint of titanium G-5 alloy sheet investigation into the TIG welded joint of titanium G-5 alloy sheet, in: Int. Conf. Mech. Renew. Energy, IOP Publishing, (2018), pp. 1-8. DOI: https://doi.org/10.1088/1757-899X/377/1/012114
  • [21] A. Iltaf, F.N. Khan, T. Shehbaz, Influence of filler material on the microstructure, mechanical properties, and residual stresses in tungsten inert gas welded Ti-5Al-2. 5Sn alloy joints, J. Mater. Des. Appl. 1-15 (2021). DOI: https://doi.org/10.1177/14644207211012433
  • [22] ASTM E8, Standard Test Methods for Tension Testing of Metallic Materials 1, ASTM Stand. (2016). DOI: https://doi.org/10.1520/E0008
  • [23] M.S. Sai, V. Dhinakaran, K.P.M. Kumar, V. Rajkumar, B. Stalin, T. Sathish, A systematic review of effect of different welding process on mechanical properties of grade 5 titanium alloy, Mater. Today Proc. 21, 948-953 (2020). DOI: https://doi.org/10.1016/j.matpr.2019.09.027
  • [24] R. Reda, M. Magdy, M. Rady, Ti-6Al-4V TIG Weld Analysis Using Fem Simulation and Experimental Characterization, Iran. J. Sci. Technol. Trans. Mech. Eng. (2019). DOI: https://doi.org/10.1007/s40997-019-00287-y
  • [25] K. Kumar, M. Masanta, S. Kumar Sahoo, Microstructure evolution and metallurgical characteristic of bead-on-plate TIG welding of Ti-6Al-4V alloy, J. Mater. Process. Technol. 265, 34-43 (2019). DOI: https://doi.org/10.1016/j.jmatprotec.2018.10.002
  • [26] N.K. Babu, S.G.S. Raman, Influence of current pulsing on microstructure and mechanical properties of Ti-6Al-4V TIG weldments, Sci. Technol. Weld. Join. 11, 442-447 (2006). DOI: https://doi.org/10.1179/174329306X120750
  • [27] V. Vaithiyanathan, V. Balasubramanian, S. Malarvizhi, V. Petley, S. Verma, Combined Effect of Gas Tungsten Arc Welding Process Variants and Post-Weld Heat Treatment on Tensile Properties and Microstructural Characteristics of Ti-Al-4V Alloy Joints, Metallogr. Microstruct. Anal. 9, 194-211 (2020). DOI: https://doi.org/10.1007/s13632-020-00631-8
  • [28] A. Rahimi, M. Shamanian, The PC - GTAW of Ti-6Al-4V Thin Sheets and Its Effects on Mechanical and Microstructural Properties, Metallogr. Microstruct. Anal. 8, 871-879 (2019). DOI: https://doi.org/10.1007/s13632-019-00595-4
  • [29] X.L. Gao, L.J. Zhang, J. Liu, J.X. Zhang, A comparative study of pulsed Nd: YAG laser welding and TIG welding of thin Ti6Al4V titanium alloy plate, Mater. Sci. Eng. A. 559, 14-21(2013). DOI: https://doi.org/10.1016/j.msea.2012.06.016
  • [30] Y. Li, J.-Y. Hou, W.-J. Zheng, Z.-Q. Wan, W.-Y. Tang, A Numerical Simulation Method Considering Solid Phase Transformation and the Experimental Verification of Ti6Al4V Titanium Alloy Sheet Welding Processes, Materials (Basel) 15, 1-27 (2022).
  • [31] M. Villa, J.W. Brooks, R. Turner, R.M. Ward, Metallurgical Modelling of Ti-6Al-4V for Welding Applications, Metals (Basel) 11, 1-20 (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-611c8690-c56d-462e-8918-e6262e763059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.