PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of Cr(VI) by Natural Clinoptilolite Zeolite from Aqueous Solutions: Isotherms and Kinetics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of this study was to evaluate the efficiency of natural zeolite for Cr(VI) removal from aqueous solutions. Following simple modification of adsorbent, the effect of operational parameters including pH (2–10), adsorbent dosage (2–20 g/L), contact time (5–150 min) and Cr(VI) concentration (10–50 mg/L) were studied according to one-factor-at-a-time procedure. The maximum Cr(VI) removal of 99.53% was obtained at initial pH of 2, contact time of 30 min, adsorbent dosage of 8 g/L and initial chromium concentration of 10 mg/L. The Freundlich isotherm was best fitted with experimental data (R2 = 0.951). Also, type 1pseudo second order kinetic model showed the most correlation (R2 = 1) with the experimental data. According to obtained results, it can be concluded that the application of clay-like adsorbents such as natural clinoptilolite zeolite can be considered as an efficient alternative for final treatment of effluents containing Cr(VI).
Rocznik
Strony
106--114
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
  • Ahvaz Jundishapur University of Medical Sciences, Environmental Technologies Research Center, Ahvaz, Iran
autor
  • Ahvaz Jundishapur University of Medical Sciences, Department of Environmental Health Engineering, School of Health, Ahvaz, Iran
  • Ahvaz Jundishapur University of Medical Sciences, Department of Environmental Health Engineering, School of Health, Ahvaz, Iran
  • Ahvaz Jundishapur University of Medical Sciences, Environmental Technologies Research Center, Ahvaz, Iran
  • Arak University of medical Sciences, Department of Environmental Health Engineering, School of Health, Arak, Iran.
autor
  • Zahedan University of Medical Sciences, Department of Environmental Health Engineering, School of Health, Zahedan, Iran
Bibliografia
  • 1. Gueye, M.Y.R., Kafack, F.T. & Blin, J. (2014). High efficiency activated carbons from African biomass residues for the removal of chromium(VI) from wastewater. J. Environ. Chem. Eng. 2(1), 273–281. DOI : 10.1016/j.jece.2013.12.014.
  • 2. Sreenivas, K.M., Gokhale, M.B.I. & Lele, S.S. (2014). Reutilization of ash gourd (Benincasa hispida) peel waste for chromium (VI) biosorption: Equilibrium and column studies. J. Environ. Chem. Eng. 2(1), 455–462. DOI: 10.1016/j.jece.2014.01.017.
  • 3. Nosuhi, M. & Nezamzadeh-Ejhieh, A. (2017). High catalytic activity of Fe(II)-clinoptilolite nanoparticales for indirect voltammetric determination of dichromate: Experimental design by response surface methodology (RSM). J. Electro. Acta, 223, 47–62. DOI: 10.1016/j.electacta.2016.12.011.
  • 4. Darvishi Cheshmeh Soltani, R.J., Safari, S. & Rajaei, M.M.S. (2016). Enhanced sonocatalysis of textile wastewater using bentonite-supported ZnO nanoparticles: Response surface methodological approach. J. Environ. Manage 179, 47–57. DOI: 10.1016/j.jenvman.2016.05.001.
  • 5. Ahluwalia, S.S. & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. J. Bioresour. Technol. 98(12), 2243–2257. DOI: 10.1016/j.biortech.2005.12.006.
  • 6. Jorfi, S., Ahmadi, M., Khataeed, A. & Safarie, M. (2017). Sono-assisted adsorption of a textile dye on milk vetch-derived charcoal supported by silica nanopowder. J. Environ. Manage. 187, 111–121. DOI: 10.1016/j.jenvman.2016.11.042.
  • 7. Soltani, R.D.J.S., Ramezani, H. & Purfadakari, S. (2016). Ultrasonically induced ZnO-biosilica nanocomposite for degradation of a textile dye in aqueous phase. J. Ultra. Sono. Chem. 28, 69–78. DOI: 10.1016/j.ultsonch.2015.07.002.
  • 8. Ahmadi, M., Jaafarzadeh, N., Mostoufid, A., Saeedie, R., Barzegarc, G. & Jorfia, S. (2017). Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J. Environ. Manage 186, 55–63. DOI: 10.1016/j.jenvman.2016.09.088.
  • 9. Rajic, N., Jovanovic, S.M., Logar, N.Z., Mazaj, M. & Kaucic, V. (2010). Removal of nickel(II) ions from aqueous solutions using the natural clinoptilolite and preparation of nano-NiO on the exhausted clinoptilolite. J. Appl. Surf. Sci. 257(5), 1524–1532. DOI: 10.1016/j.apsusc.2010.08.090.
  • 10. Bagheri Ghomi, A. & Ashayeri, V. (2012). Photocatalytic efficiency of CuFe2O4 by supporting on clinoptilolite in the decolorization of acid red 206 aqueous solutions. Iranian J. Cataly. 2(3), 135–140.
  • 11. Jha, V.K. & Hayashi, S.H. (2009). Modification on natural clinoptilolite zeolite for its NH4+ retention capacity. J. Hazard. Mater. 169(1–3), 29–35. DOI: 10.1016/j.jhazmat.2009.03.052.
  • 12. Gedik, K. & Imamoglu, I. (2008). Removal of cadmium from aqueous solutions using clinoptilolite: influence of pretreatment and regeneration. J. Hazard. Mater. 155(1–2), 385–392. DOI: 10.1016/j.jhazmat.2007.12.101.
  • 13. Kocaoba, S., Orhan, Y. & Akyüz, T. (2007). Kinetics and equilibrium studies of heavy metal ions removalby use of natural zeolite. J. Desali. 214(1–3), 1–10. DOI: 10.1016/j.desal.2006.09.023.
  • 14. Vassileva, P. & Voikova, D. (2009). Investigation on natural and pretreated Bulgarian clinoptilolite for ammonium ions removal from aqueous solutions. J. Hazard. Mater. 170 (2–3), 948–953. DOI: 10.1016/j.jhazmat.2009.05.062.
  • 15. Danesh-Khorasgani, M. & Nezamzadeh-Ejhieh, A. (2016). PVC-zeolite nanoparticle-surfactant anion exchanger membrane: preparation, characterization, and its application in development of ion-selective electrode for detection of sulfate. J. Solid State. Electro. Chem. 20(10), 2827–2833. DOI: 10.1007/s10008-016-3265-9.
  • 16. Hashemi, S. & Nezamzadeh-Ejhieh, A. (2014). A novel chromium selective electrode based on surfactant-modified Iranian clinoptilolite nanoparticles. J. Desali & Water Treat. 57, 3304–3314. DOI: 10.1080/19443994.2014.989916.
  • 17. Sharafzadeh, S. & Nezamzadeh-Ejhieh, A. (2015). Using of anionic adsorption property of a surfactant modified clinoptilolite nano-particles in modification of carbon paste electrode as effective ingredient for determination of anionic ascorbic acid species in presence of cationic dopamine species. J. Electrochim. Acta 184, 371–380. DOI: 10.1016/j.electacta.2015.09.164.
  • 18. Deravanesiyan, M. & Malekpour, M.B.A. (2015). The removal of Cr (III) and Co (II) ions from aqueous solution by two mechanisms using a new sorbent (alumina nanoparticles immobilized zeolite) — Equilibrium, kinetic and thermodynamic studies. J. Mol. Liq. 209, 246–257. DOI: 10.1016/j.molliq.2015.05.038.
  • 19. Ouadjenia-Marouf, R., Schott, J. & Yahiaoui, A. (2013). Removal of Cu(II), Cd(II) and Cr(III) ions from aqueous solution by dam silt. J. Arab. Chem. 6(4), 401–406. DOI: 10.1016/j.arabjc.2010.10.018.
  • 20. Ajoudanian, N. & Nezamzadeh-Ejhieh, A. (2015). Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin. J. Mater. Sci. Semi Proce. 36, 162–169. DOI: 10.1016/j.mssp.2015.03.042.
  • 21. Dianati Tilaki, R.A., Kahe, D. & Zazouli, M.A. (2013). Efficiency of Zeolite Clinoptilolite in Removal of Ammoniumion from Polluted Waters. J. Maz. Univ. Med. Sci. 22(97), 250–256. http://jmums.mazums.ac.ir/article-1-1815-en.html.
  • 22. APHA, 2005. Standard Methods for the Examination of Water & Wastewater. Washington DC.
  • 23. Jiménez-cedillo, M.J., Olguín, M.T. & Fall, Ch. (2009). Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron – manganese-modified clinoptilolite-rich tuffs. J. Hazard. Mater. 163(2–3), 939–945. DOI: 10.1016/j.jhazmat.2008.07.049.
  • 24. Derikvandi, H. & Nezamzadeh-Ejhieh, A. (2017). A comprehensive study on electrochemical and photocatalytic activity of SnO2-ZnO/clinoptilolite nanoparticles. J. Molecu. Catal. A: Chem. 426, 158–169. DOI: 10.1016/j.molcata.2016.11.011.
  • 25. Mihaly-Cozmuta, L., Mihaly-Cozmuta, A., Peter, A., Nicula, C., Tutu, H. & Silipas, D. (2014). Adsorption of heavy metal cations by Na-clinoptilolite: Equilibrium and selectivity studies. J. Environ. Manage 137, 69–80. DOI: 10.1016/j.jenvman.2014.02.007.
  • 26. Hernández-Montoya, V., Pérez-Cruz, M.A., Mendoza-Castillo, D.I., Moreno-Virgen, M.R. & Bonilla-Petriciolet, A. (2013). Competitive adsorption of dyes and heavy metals on zeolitic structures. J. Environ. Manage 116, 213–221. DOI: 10.1016/j.jenvman.2012.12.010.
  • 27. Wang, S. & A riyanto, E. (2007). Competitive adsorption of malachite green and Pb ions on natural zeolite. J. Coll. Interf. Sci. 314(1), 25–31. DOI: 10.1016/j.jcis.2007.05.032.
  • 28. Moussavi, G., Talebi, S., Farrokhi, M. & Sabouti, R.M. (2011). The investigation of mechanism, kinetic and isotherm of ammonia and humic acid co-adsorption onto natural zeolite. J. Chem. Eng. 171(3), 1159–1169. DOI: 10.1016/j.cej.2011.05.016.
  • 29. Inglezakis, V.J., Stylianou, M., Gkantzou, D. & Loizidou, M.D. (2007). Removal of Pb(II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. J. Desali. 210(1–3), 248–256. DOI: 10.1016/j.desal.2006.05.049.
  • 30. Dal Bosco, S.M., Jimenez, R.S. & Carvalho, W.A. (2005). Removal of toxic metals from wastewater by Brazilian natural scolecite. J. Coll. Interf. Sci. 281(2) 424–431. DOI: 10.1016/j.jcis.2004.08.060.
  • 31. Nezamzadeh-Ejhieh, A. & Raja, G. (2013). Modification of Nanoclinoptilolite Zeolite with Hexadecyltrimethylammonium Surfactant as an Active Ingredient of Chromate-Selective Membrane Electrode. J. Chemis. 1–13. DOI: 10.1155/2013/685290.
  • 32. Hegazi, H.A. (2013). Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. J. HBRC 9(3), 276–282. DOI: 10.1016/j.hbrcj.2013.08.004.
  • 33. Sarı, A. & Tuzen, M. (2008). Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 160(2–3), 349–355. DOI: 10.1016/j.jhazmat.2008.03.005.
  • 34. Darvishi-Cheshme Soltani, R., Shams-Khorramabadi, G., Khataee, A.R. & Jorfi, S. (2013). Silica nanopowders/alginate composite for adsorption of lead (II) ions in aqueous solutions. J. Taiwan Inst. Chem. Eng. 45(3), 973–980. DOI: 10.1016/j.jtice.2013.09.014.
  • 35. Esfehani, A. & Shamohammadi-Heidari, Z. (2011). Manganese Removal from Aqueous Solution by Natural and Sodium Modified Zeolite. J. Environ. Stud. 37, 28–30.
  • 36. Borandegi, M. & Nezamzadeh-Ejhieh, A. (2015). Enhanced removal efficiency of clinoptilolite nano-particles toward Co(II) from aqueous solution by modification with glutamic acid. J. Coll. &Surf. A: Physicochem & Engin Aspects. 479, 35–45. DOI: 10.1016/j.colsurfa.2015.03.040.
  • 37. Sprynskyy, M., Buszewski, B., Terzyk, A.P. & Namieśnik, J. (2006). Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J. Coll. Inter. Sci. 304(1), 21–28. DOI: 10.1016/j.jcis.2006.07.068.
  • 38. Malamis, S. & Katsou, F. (2013). A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. J. Hazard. Mater. 252–253, 428–461. DOI: 10.1016/j.jhazmat.2013.03.024. 3
  • 39. Behnamfard, A. & Salarirad, M.M. (2009). Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon. J. Hazard. Mater. 170(1), 127–133. DOI: 10.1016/j.jhazmat.2009.04.124.
  • 40. Anari-Anaraki, M. & Nezamzadeh-Ejhieh, A. (2015). Modification of an Iranian clinoptilolite nano-particles by hexadecyltrimethyl ammonium cationic surfactant and dithizone for removal of Pb(II) from aqueous solution. J. Coll. Interf. Sci. 440, 272–281. DOI: 10.1016/j.jcis.2014.11.017.
  • 41. Naghash, A. & Nezamzadeh-Ejhieh, A. (2015). Comparison of the efficiency of modified clinoptilolite with HDTMA and HDP surfactants for the removal of phosphate in aqueous solutions. J. Industri & Eng. Chem. 31, 185–191. DOI: 10.1016/j.jiec.2015.06.022.
  • 42. Dizge, N., Keskinler, B. & Barlas, H. (2009). Sorption of Ni (II) ions from aqueous solution by Lewatit cation-exchange resin. J. Hazard. Mater. 167(1–3), 915–926. DOI: 10.1016/j.jhazmat.2009.01.073.
  • 43. Najafi, M., Yousefi, Y. & Rafati, A.A. (2012). Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. J. Sep. Purif. Technol. 85, 193–205. DOI: 10.1016/j.seppur.2011.10.011.
  • 44. Heidari-Chaleshtori, M. & Nezamzadeh-Ejhieh, A. (2015). Clinoptilolite nano-particles modified with aspartic acid for removal of Cu(II) from aqueous solutions: isotherms and kinetic aspects. J. New. Chem. 39, 9396–9406. DOI: 10.1039/C5NJ01631B.
  • 45. Guo, H., Zhang, S., Kou, Z., Zhai, S., Ma, W. & Yang, Y. (2015). Removal of cadmium(II) from aqueous solutions by chemically modified maize straw. J. Carbohydr. Polym. 115, 177–85. DOI: 10.1016/j.carbpol.2014.08.041.
  • 46. Ozay, O., Ekici, S., Baran, Y., Aktas, N. & Sahiner, N. (2009). Removal of toxic metal ions with magnetic hydrogels. J. Water Res. 43. 4403–4411. DOI: 10.1016/j.watres.2009.06.058.
  • 47. Rezaee, A., Godini, H. & Jorfi, S. (2010). Nitrate removal from aqueous solution using mgcl2 impregnated activated carbon. J. Environ. Eng. & Manag. 9(3), 449–452.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-611be2f2-7f00-4fb1-9a78-24d34a72b0aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.