PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical analysis of chemically reacting species and radiation effects on mhd free convective flow through a rotating porous medium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study deals with the effects of radiation and mass transfer on a laminar unsteady free convective flow of a viscous, incompressible, electrically conducting and chemically reacting fluid past a vertical surface in a rotating porous medium. It is assumed that the surface is rotating with angular velocity . The governing mathematical equations are developed and solved by adopting complex variable notations and the analytical expressions for velocity, temperature and concentration fields are obtained. The effects of various parameters on mean primary velocity, mean secondary velocity, mean temperature, mean concentration, transient primary velocity, transient secondary velocity, transient temperature and transient concentration have been discussed and shown graphically. Further, the consequences of different parameters on rate of heat transfer coefficient (Nusselt number), rate of mass transfer coefficient (Sherwood number) and drag coefficient (mean skin-friction) are analysed. It is observed that the mean and transient primary velocities increase with the radiation parameter E, while reverse phenomena are observed for the Schmidt number, Sc, and the chemical reaction parameter, . The results may be useful in studying oil or gas and water movement through an oil or gas field reservoir, underground water migration, and the filtration and water purification processes.
Rocznik
Strony
193--203
Opis fizyczny
Bibliogr. 67 poz., rys., tab., wykr.
Twórcy
  • Amity Institute of Applied Sciences, Amity University, Amity Road, Sector 125, Noida, Utter Pradesh – 201303, India
  • Department of Mathematics, Birla Institute of Technology and Science, Pilani, Rajasthan – 333031, India
autor
  • Amity Institute of Applied Sciences, Amity University, Amity Road, Sector 125, Noida, Utter Pradesh – 201303, India
Bibliografia
  • 1. Gebhart B, Pera L. The nature of vertical natural convection flow from the combined buoyancy effects-on thermal and mass diffusion. Int. J. Heat Mass Transfer. 1971; 14: 2024-2050 http://dx.doi.org/10.1016/0017-9310(71)90026-3.
  • 2. Khanduri U, Sharma BK, Sharma M, Mishra NK, Saleem N. Sensitivi-ty analysis of electroosmotic magnetohydrodynamics fluid flow through the curved stenosis artery with thrombosis by response sur-face optimization. Alexandria Engineering Journal, 2023: 75, 1-27. https://doi.org/10.1016/j.aej.2023.05.054.
  • 3. Kodi R, Ganteda C, Dasore A, Kumar ML, Laxmaiah G, Hasan MA, Islam S, Razak A. Influence of MHD mixed convection flow for max-well nanofluid through a vertical cone with porous material in the ex-istence of variable heat conductivity and diffusion. Case Studies in Ther Engg. 2023; 44: 102875.
  • 4. Veera Krishna M, Chamkha AJ. Hall and ion slip effects on magneto-hydrodynamic convective rotating flow of Jeffreys fluid over an impul-sively moving vertical plate embedded in a saturated porous medium with Ramped wall temperature. Numerical Methods for Partial Differ-ential Equations. 2021; 37(3): 2150-2177. https://doi.org/10.1002/num varying concentratio.22670
  • 5. Veera Krishna M. Hall and ion slip impacts on unsteady MHD free convective rotating flow of Jeffreys fluid with ramped wall tempera-ture. Int. Commun in Heat and Mass Transf. 2020; 119: 107927. https://doi.org/10.1016/j.icheatmasstransfer.2020.104927
  • 6. Hossain MA, Hussain S, Rees DAS. Influence of fluctuating surface temperature and concentration on natural convection flow from a ver-tical flat plate. J. of Appl. Math. and Mech. 2001; 81: 699-709. https://doi.org/10.1002/1521-4001(200110)81:10%3C699::AID-ZAMM699%3E3.0.CO;2-3
  • 7. Sahoo SN, Rout PK, Dash GC. Unsteady MHD Flow through Porous Media with Temporal Variation in Temperature and Concentration at the Plate. Int. J. of Ambient Energy. 2022; 43(1): 7977-7986. https://doi.org/10.1080/01430750.2022.2086914
  • 8. Sharma PK. Simultaneous thermal and mass diffusion on three-dimensional mixed convection flow through a porous medium. J. of Porous Media. 2005; 8(4): 419-427. doi:10.1615/JPorMedia.v8.i4.70.
  • 9. Maatoug S, Babu HK, Deepthi VVL. Ghachem K, Raghunath K, Ganteda CK, Khan SU. Variable chemical species and thermo-diffusion Darcy-Forchheimer squeezed flow of Jeffrey nanofluid in horizontal channel with viscous dissipation effects. J. of the Indian Chem. Society. 2023; 100(1): 100831.
  • 10. Deepthi VVL, Lashin MMA, Kumar NR, Raghunath K, Ali F, Oreijah M, Guedri K, Tag-ElDin ESM, Khan MI, Galal AM. Recent Develop-ment of Heat and Mass Transport in the Presence of Hall, Ion Slip and Thermo Diffusion in Radiative Second Grade Material: Applica-tion of Micromachines. Micromachines. 2022; 13(10): 1566. https://doi.org/10.3390/mi13101566
  • 11. Chu YM, Jakeer S, Reddy SRR, Rupa ML, Trabelsi Y, Khan MI, Hejazi HA, Makhdoum BM. Eldin S.M. Double diffusion effect on the bio-convective magnetized flow of tangent hyperbolic liquid by a stretched nano-material with Arrhenius Catalysts. Case Studies in Thermal Engg. 2023; 44: 102838. https://doi.org/10.1016/j.csite.2023.102838
  • 12. Sharma BK, Sharma PK, Chaudhary RC. Effects of fluctuating sur-face temperature and concentration on unsteady convection flow past an infinite vertical plate with constant suction. Heat Transf. Res. 2009; 40(6): 505-519. doi: 10.1615/HeatTransRes.v40.i6.10.
  • 13. Shuguang Li, Kodi R, Ayman A, Farhan A, Zaib A, Khan MI, Sayed M E & Puneeth V. Effects of activation energy and chemical reaction on unsteady MHD dissipative Darcy-Forchheimer squeezed flow of Casson fluid over horizontal channel. Sc. Report. 2023:13: 2666.
  • 14. Bafakeeh OT, Raghunath K, Ali F, Khalid M, Tag-ElDin ESM, Oreijah M, Guedri K, Kheder NB, Khan MI. Hall Current and Soret Effects on Unsteady MHD Rotating Flow of Second-Grade Fluid through Porous Media under the Influences of Thermal Radiation and Chemical Re-actions. Catalysts. 2022; 12(10): 1233. https://doi.org/10.3390/catal12101233
  • 15. Raghunath K, Mohanaramana R. Hall, Soret, and rotational effects on unsteady MHD rotating flow of a second-grade fluid through a po-rous medium in the presence of chemical reaction and aligned mag-netic field. Int. Commun in Heat and Mass Transf. 2022; 137: 106287. https://doi.org/10.1016/j.icheatmasstransfer.2022.106287
  • 16. Tripathi B, Sharma BK. Effect of variable viscosity on MHD inclined arterial blood flow with chemical reaction. Int. J. of Appl. Mech. and Engg. 2018; 23(3): 767–785. http://dx.doi.org/10.2478/ijame-2018-0042.
  • 17. Tripathi B, Sharma BK. Influence of heat and mass transfer on two-phase blood flow with joule heating and variable viscosity in the presence of variable magnetic field. Int. J. of Comput. Method. 2020; 17(3): 1850139. https://doi.org/10.1142/S0219876218501396
  • 18. Li S, Khan MI, Alzahrani F, Eldin SM. Heat and mass transport analysis in radiative time dependent flow in the presence of Ohmic heating and chemical reaction, viscous dissipation: An entropy mod-elling. Case Studies in Thermal Engg. 2023; 42: 102722. https://doi.org/10.1016/j.csite.2023.102722
  • 19. Li S, Raghunath K, Alfaleh A, Ali F, Zaib A, Khan MI, Eldin SM, Puneeth V. Effects of activation energy and chemical reaction on un-steady MHD dissipative Darcy–Forchheimer squeezed flow of Cas-son fluid over horizontal channel. Scientific reports. 2023; 13: 2666. https://doi.org/10.1038/s41598-023-29702-w
  • 20. Chamka AJ, Takhar HS, Soundalgekar VM. Radiation effects on free convection flow past a semi-infinite vertical plate with mass transfer. Chem. Engg. J. 2001; 84: 335-342. http://dx.doi.org/10.1016/S1385-8947(00)00378-8
  • 21. Chamka AJ. Non-Darcy fully developed mixed convection in a porous medium channel with heat generation/absorption and hydromagnetic effects. Numer. Heat transfer. 1997; 32: 853-875. https://doi.org/10.1080/10407789708913911
  • 22. Chamka AJ, Mujtaba M, Quadri A, Issac C. Thermal radiation effects on MHD forced convection flow adjacent to a non-isothermal wedge in the presence of heat source or sink. Heat Mass Transfer. 2003; 39: 305-312. https://doi.org/10.1007/s00231-002-0353-4.
  • 23. Kumar YS, Hussain S, Raghunath K, Farhan A, Kamel G, Sayed M, Khan MI. Numerical analysis of magnetohydrodynamics Casson nanofluid flow with activation energy, Hall current and thermal radia-tion. Sc. Report. 2023:13: 4021.
  • 24. Kodi R. Study of Heat and Mass Transfer of an Unsteady Magneto-hydrodynamic Nanofluid Flow Past a Vertical Porous Plate in the Presence of Chemical Reaction, Radiation and Soret Effects. J. of Nanofluids. 2023; 12(3): 767-776(10). https://doi.org/10.1166/jon.2023.1965
  • 25. Veera Krishna M, Jyothi K, Chamkha AJ. Heat and mass transfer on MHD flow of second-grade fluid through porous medium over a semi-infinite vertical stretching sheet. J. of Porous Media. 2020; 23(8): 751-765.10.1615/JPorMedia.2020023817.
  • 26. Muthucumaraswamy R, Senthil Kumar G. Heat and mass transfer effects on moving vertical plate in the presence of thermal radiation. Theor. Appl. Mech. 2004; 31: 35-46. http://dx.doi.org/10.2298/TAM0401035M
  • 27. Muthucumaraswamy R, Chandrakala P. Radiative heat and mass transfer effects on moving isothermal vertical plate in the presence of chemical reaction. Int. J. of Appl. Mech. and Engg. 2006; 11: 639-646.
  • 28. http://www.ijame.uz.zgora.pl/ijame_files/archives/v11PDF/n3/639-646_Article_16.pdf.
  • 29. Veera Krishna M, Jyothi K, Chamkha AJ. Heat and mass transfer on unsteady, magnetohydrodynamic, oscillatory flow of second-grade fluid through a porous medium between two vertical plates, under the influence of fluctuating heat source/sink, and chemical reaction. Int. J. of Fluid Mechanics Research. 2018; 45(5): 459-477. 10.1615/InterJFluidMechRes.2018024591.
  • 30. Veera Krishna M, Anand PVS, Chamkha AJ. Heat and mass transfer on free convective flow of a micropolar fluid through a porous surface with inclined magnetic field and hall effects. Special topics & Reviews in the porous media: An Int. J. 2019; 10(3): 203-233. 10.1615/SpecialTopicsRevPorousMedia.2018026943.
  • 31. Prasad VR, Reddy NB. Radiation and mass transfer effects on an unsteady MHD free convection flow past a heated vertical plate in a porous medium with viscous dissipation. Theoret. Appl. Mech. 2007; 34(2): 135-160. https://doi.org/10.2298/TAM0702135P.
  • 32. Prasad VR, Reddy NB, Muthucumaraswamy R. Radiation and mass transfer effects on two-dimensional flow past an impulsively started infinite vertical plate. Int. J. of Therm. Science. 2007; 46(12): 1251-1258. http://dx.doi.org/10.1016/j.ijthermalsci.2007.01.004.
  • 33. Baitharu AP, Sahoo SN, Dash GC. Numerical approach to non-Darcy mixed convective flow of non-Newtonian fluid on a vertical surface with varying surface temperature and heat source. Karabala Int. J. of Modern Sc. 2020; 6(3): 332-343. https://doi.org/10.33640/2405-609X.1753.
  • 34. Krishna MV, Ahamad NA, Chamkha AJ. Numerical investigation on unsteady MHD convective rotating flow past an infinite vertical mov-ing porous surface. Ain Shams Engg. J. 2021; 12(2): 2099-2109. https://doi.org/10.1016/j.asej.2020.10.013
  • 35. Li S, Ali F, Zaib A, Loganathan K, Eldin SM, Khan MI. Bioconvection effect in the Carreau nanofluid with Cattaneo–Christov heat flux us-ing stagnation point flow in the entropy generation: Micromachines level study. Open Physics. 2023; 21(1): 20220228. https://doi.org/10.1515/phys-2022-0228
  • 36. Hossain MA, Das SK, Pop I. Heat transfer response of MHD free convection flow along a vertical plate to surface temperature oscilla-tion. Int. J. Non-linear Mech. 1998; 33: 541-553. https://doi.org/10.1016/S0020-7462(96)00151-5
  • 37. Reddy Vaddemani R, Kodi R, Mopuri O. Characteristics of MHD Casson fluid past an inclined vertical porous plate. Materialstoday: Proceedings. 2022; 49(5): 2136-2142. https://doi.org/10.1016/j.matpr.2021.08.328
  • 38. Veera Krishna M, Chamkha AJ. Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Results in Physics. 2019; 15: 102652. https://doi.org/10.1016/j.rinp.2019.102652
  • 39. Veera Krishna M. Hall and ion slip effects on radiative MHD rotating flow of Jeffreys fluid past an infinite vertical flat porous surface with ramped wall velocity and temperature. Int. Commun in Heat and Mass Transf. 2021; 126: 105399. https://doi.org/10.1016/j.icheatmasstransfer.2021.105399
  • 40. Veera Krishna M, Chamkha AJ. Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium. Int. Commun in Heat and Mass Transf. 2020; 113: 104494. https://doi.org/10.1016/j.icheatmasstransfer.2020.104494
  • 41. Sharma BK, Mishra A, Gupta S. Heat, and mass transfer in magneto-biofluid flow through a non-Darcian porous medium with joule effect. J. of Engg. Physics and Thermophys. 2013; 86(4): 766–774. http://dx.doi.org/10.1007/s10891-013-0893-0
  • 42. Rout PK, Sahoo SN, Dash GC. Effect of Heat Source and Chemical Reaction on MHD Flow Past a Vertical Plate with Variable Tempera-ture. J. of Naval Architec. and Marine Engg. 2016; 13(1): 101-110. https://doi.org/10.3329/jname.v13i1.23930
  • 43. Aldoss TK, Al-Nimr A, Jarrah MA, Al-Sha'er BJ. Magnetohydrody-namic mixed convection from a vertical plate embedded in a porous medium. Numerical Heat Transfer Part A. 1995; 28(5): 635–645. https://doi.org/10.1080/10407789508913766.
  • 44. Helmy KA. MHD unsteady free convection flow past a vertical porous plate. ZAMM. 1998; 78(4): 255–270. https://doi.org/10.1002/(SICI)1521-4001(199804)78:4%3C255::AID-ZAMM255%3E3.0.CO;2-V
  • 45. Kim YJ. Unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable suction. Int. J. of Engg. Sc. 2000; 38(8): 833–845. http://dx.doi.org/10.1016/S0020-7225(99)00063-4
  • 46. Veera Krishna M, Swarnalathamma BV, Chamkha AJ. Investigations of Soret, Joule and Hall effects on MHD rotating mixed convective flow past an infinite vertical porous plate. J. of Ocean Engg. and Sc. 2019; 4(3): 263-275. https://doi.org/10.1016/j.joes.2019.05.002
  • 47. Veera Krishna M, Ahamad NA, Chamkha AJ. Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate. Alex. Engg. J. 2020; 59(2): 565-577. https://doi.org/10.1016/j.aej.2020.01.043
  • 48. Takhar HS, Roy S, Nath G. Unsteady free convection flow over an infinite vertical porous plate due to the combined effects of thermal and mass diffusion, magnetic field and Hall currents. Heat and Mass Transfer. 2003; 39(10): 825–834. http://dx.doi.org/10.1007/s00231-003-0427-y
  • 49. Raghunath K, Mohanaramana R, Nagesh G, Charankumar G, Khan SU, Khan MI. Hall and ion slip radiative flow of chemically reactive second grade through porous saturated space via perturbation ap-proach. Waves in Random and Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2108555.
  • 50. 49. Kar M, Sahoo SN, Dash GC. Effect of the Hall Current and Chemical Reaction on MHD Flow along an Accelerated Porous Flat Plate with Internal Heat Absorption/ Generation. J. of Enggg Physics and Thermophysics. 2014; 87(3): 624-634. https://doi.org/10.1007/s10891-014-1099-9
  • 51. Sharma BK , Sharma PK and Chauhan SK. Effect of MHD on un-steady oscillatory Couette flow through porous media, Int. J. of Appl. Mech. and Engg., Poland, 2022, Vol (17),1, pp 188-202.
  • 52. Choksi VG, Singh TR. A mathematical model of imbibition phenome-non in homogeneous porous media. Special topics & Reviews in the porous media: An Int. J. 2019; 10(1): 1-13. 10.1615/SpecialTopicsRevPorousMedia.2018021445
  • 53. Jha BK, Isah BY, Uwanta IJ. Unsteady MDH free convective Couette flow between vertical porous plates with thermal radiation. J. of king Saud University-Science. 2015; 27(4): 338-348. https://doi.org/10.1016/j.jksus.2015.06.005
  • 54. Kiranakumar HV, Thejas R, Naveen CS, Khan MI, Prasanna GD, Reddy S, Oreijah M, Guedri K, Bafakeeh OT, Jameel M. A review on electrical and gas-sensing properties of reduced graphene oxide-metal oxide nanocomposites. Biomass Conversion and Biorefinery. 2022. https://doi.org/10.1007/s13399-022-03258-7
  • 55. Sharma BK, Singh AP, Yadav K, Chaudhary RC. Effects of chemical reaction on magneto-micropolar fluid flow from a radiative surface with variable permeability. Int.J. of Appl. Mech. and Engg. 2013; 18(3): 833–851. http://dx.doi.org/10.2478/ijame-2013-0050.
  • 56. Sharma BK, Sharma P, Mishra N K, Fernandez-Gamiz U. Darcy-Forchheimer hybrid nanofluid flow over the rotating Riga disk in the presence of chemical reaction: Artificial neural network approach. Al-exandria Engineering Journal, 2023: 76, 101-130. https://doi.org/10.1016/j.aej.2023.06.014.
  • 57. Baitharu AP, Sahoo SN, Dash GC. Effect of Joule Heating on Steady MHD Convective Micropolar Fluid Flow over a Stretching/Shrinking Sheet with Slip. J. of Naval Architec. and Marine Engg. 2021; 18(2): 175-186. http://dx.doi.org/10.3329/jname.v18i2
  • 58. Suresh P, Hari Krishan Y, Sreedhar Rao R, Janardhana Reddy PV. Effect of Chemical Reaction and Radiation on MHD Flow along a moving Vertical Porous Plate with Heat Source and Suction. Int. J. of Appl. Engg. Res. 2019; 14(4): 869-876. https://www.ripublication.com/ijaer19/ijaerv14n4_04.
  • 59. Mamatha SU, Renuka Devi RLV, Ahammad NA, Shah NA, Rao BM, Raju CSK, Khan MI, Guedri K. Multi-linear regression of triple diffu-sive convectively heated boundary layer flow with suction and injec-tion: Lie group transformations. Int. J. of Modern Physics B. 2023; 37(1): 2350007. https://doi.org/10.1142/S0217979223500078
  • 60. Cogley AC, Vinceti WG, Gilles SE. Differential approximation for radiation transfer in a nongray near equilibrium, AIAA Journal. 1968; 6: 551-553. https://doi.org/10.2514/3.4538
  • 61. Xin X, Khan MI, Li S. Scheduling equal-length jobs with arbitrary sizes on uniform parallel batch machines. Open Mathematics. 2023; 21: 20220562. https://doi.org/10.1515/math-2022-0562
  • 62. Sharma BK, Gandhi R. Combined effects of Joule heating and non-uniform heat source/sink on unsteady MHD mixed convective flow over a vertical stretching surface embedded stretching in a Darcy-Forchheimer porous medium. Propulsion and Power Research. 2022; 11(2): 276-292. https://doi.org/10.1016/j.jppr.2022.06.001
  • 63. Li S, Puneeth V, Saeed AM, Singhal A, Al-Yarimi FAM, Eldin SM. Analysis of the Thomson and Troian velocity slip for the flow of ter-nary nanofluid past a stretching sheet. Scientific reports. 2023; 13: 2340. https://doi.org/10.1038/s41598-023-29485-0
  • 64. Sharma PK, Sharma BK, Mishra NK, Rajesh H. Impact of Arrhenius activation energy on MHD nano-fluid flow past a stretching sheet with exponential heat source: A modified Buongiorno’s model approach. Int. J. of Modern Physics B. 2023. https://doi.org/10.1142/S0217979223502843
  • 65. Gandhi R, Sharma BK, Mishra NK, Al-Mdallal QM. Computer simula-tions of EMHD Casson nanofluid Flow of blood through an irregular stenotic permeable artery. App. of Koo-Kleinstreuer-Li Corr. Nano-materials. 2023; 13: 652. https://doi.org/10.3390/ nano13040652
  • 66. Jahanshahi H, Yao Q, Khan MI, Moroz I. Unified neural output-constrained control for space manipulator using tan-type barrier Lya-punov function. Adv. In Space Research. 2023; 71(9): 3712-3722. https://doi.org/10.1016/j.asr.2022.11.015
  • 67. Liu Z, Li S, Sadaf T, Khan SU, Alzahrani F, Khan MI, Eldin SM. Numerical bio-convective assessment for rate type nanofluid influ-enced by Nield thermal constraints and distinct slip features. Case Studies in Thermal Engg. 2023; 44: 102821. https://doi.org/10.1016/j.csite.2023.102821
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6118b071-013a-4e0c-abff-a2ba88e96f81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.