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Abstract: The present study deals with the effects of radiation and mass transfer on a laminar unsteady free convective flow of a viscous, 
incompressible, electrically conducting and chemically reacting fluid past a vertical surface in a rotating porous medium. It is assumed  

that the surface is rotating with angular velocity . The governing mathematical equations are developed and solved by adopting complex 
variable notations and the analytical expressions for velocity, temperature and concentration fields are obtained. The effects of various  
parameters on mean primary velocity, mean secondary velocity, mean temperature, mean concentration, transient primary velocity,  
transient secondary velocity, transient temperature and transient concentration have been discussed and shown graphically. Further,  
the consequences of different parameters on rate of heat transfer coefficient (Nusselt number), rate of mass transfer coefficient (Sherwood 
number) and drag coefficient (mean skin-friction) are analysed. It is observed that the mean and transient primary velocities increase  
with the radiation parameter E, while reverse phenomena are observed for the Schmidt number, Sc, and the chemical reaction parameter, 

. The results may be useful in studying oil or gas and water movement through an oil or gas field reservoir, underground water migration, 
and the filtration and water purification processes. 
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1. INTRODUCTION 

In several trades of science and engineering, the impact of the 
chemical reaction along with the transfer of heat and mass is 
studied, since it has a significant practical importance among 
scientists and engineers. First of all, the combinatorial buoyancy 
effects were investigated, and we found that it imparts the natural-
istic convective flows adjoining together with the upright and flat 
surfaces of the thermal and mass diffusion. In the realm of theo-
retical investigation, the dynamic interplay of magnetohydrody-
namics and rotational forces unveils its enigmatic balance with a 
viscous, incompressible fluid cascading over a vertical plate en-
sconced within a porous medium [1–5]. The impact of the varying 
concentration and temperature of the surface extensively on the 
naturalistic convective flow for an upright flat surface was studied 
extensively. The flow model functions as a cooling agent at the 
surface, leading to a reduction in the concentration of the diffusing 
species at the boundary. The presence of an applied magnetic 
field, thermal radiation, porosity in the saturated porous medium, 
and a chemically reactive process all contribute to the gradual 
thinning of the boundary layer [6, 7]. The analysis of the thermal 
along with mass diffusion simultaneously was reported for the 
mixed type of convection flows via a perforated median. Increas-
ing both the heat source parameter and the radiation quantity 
leads to a heightened concentration of temperature distribution. 
On the other hand, elevating one of the chemical reaction pa-
rameters causes a reduction in concentration throughout the 
entire fluid region. Manipulating the rotation parameter can de-
crease skin-friction, but it may worsen the Hall effect and ion slip 

effect. Interestingly, augmenting the chemical reaction parameter 
results in a simultaneous increase in the mass transfer rate [8–
11]. The impacts of varying temperature and concentration were 
found over the free convective stream flow in unsteady state 
condition passed on an upright surface with infinite length and 
static state of suction. The role of chemical reactions and activa-
tion energy holds immense significance in analysing the behaviour 
of fluid dynamics and its thermal characteristics [12–15]. The 
analysis delves into the application of fluid flow in various do-
mains, including nuclear reactors, automobiles, manufacturing 
setups and electronic appliances. Specifically, when both the 
Darcy–Forchheimer and activation energy parameters are elevat-
ed, the velocity and concentration of the fluid decrease. This 
implies a delicate balance between these factors in the overall 
behaviour of the system under investigation. The impact of the 
heat along with mass transport on the blood flow model having 
two-phase has been represented and discussed in the analogous 
literature. Investigation is conducted into the dynamic behaviour of 
an unsteady flow of a viscous liquid subjected to an induced 
magnetic field while being controlled through uniform suction [16–
19]. The nalysis addresses the thermal equation, radiation, and 
entropy rate in the thermodynamic system. These results provide 
valuable insights into the intricate interplay between the thermal 
and magnetic fields, entropy production, concentration and veloci-
ty. By approaching this complex problem in a unique way, the 
prevailing understanding into how different physical variables 
interact and influence the overall behaviour of the system under 
investigation was studied. 

In the progressions containing higher temperatures, the trans-
fer of heat through radiation along with the impact of convective 
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heat transfer as well as mass transfer has a significant role in the 
designing and development of key equipment used in the fields, 
for instance gas turbines power generation plants, nuclear power 
plants and the numerous propulsive tactics used in the area of 
aerospace such as aircraft, satellites, space shuttles and missiles. 
The impacts of radiation were represented for the free convective 
stream flow over the hemi-infinite past porous surface along with 
the transfer of the mass. The numerical values of physical quanti-
ties, such as the local skin-friction coefficient, the local Nusselt 
number and the local Sherwood number, were also calculated in a 
clear and organised way [20–25]. The transfer of heat was evalu-
ated under a thermally radiative medium, while the transfer of 
mass for an upright surface in the moving condition. The impacts 
of heat and mass transfer were explored on the free convective 
flow of a micropolar fluid adjacent to an infinite vertical porous 
plate [26–29]. The significance of this research extends to diverse 
fields such as geophysics, medicine, biology and any processes 
that benefit from a strong magnetic field in a low-density gas 
environment. The impact of the radiation along with the transfer of 
mass was also investigated over an isothermal upright surface 
under the two-dimensional flow. The introduction of coordinate 
and parametric transformations in the governing equations has 
revealed remarkable insights that have seldom been reported in 
the literature [30–32]. The investigation has yielded crucial find-
ings, particularly concerning the impact of the Ergun number on 
various fluid types. Interestingly, the Ergun number has demon-
strated its ability to reduce the velocity boundary layer of pseudo-
plastic fluids, a highly desirable outcome. However, it has been 
observed to enhance the thermal boundary layer in these fluids. In 
contrast, for Newtonian and dilatant fluids, this effect has proven 
to be relatively insignificant. The unsteady convectional flow by 
means of the rotating perforated median with the radiational effect 
and periodic flux of heat was reported significantly [33, 34]. 

MHD is an important aspect in covering the mechanical prop-
erties of the liquid in the fluid dynamics and deals with the coop-
eration among the electrically conductive and electromagnetic 
fluids. The flows involved in the fluids that are a good conductor of 
the electricity subjected to the effect of the magnetic field have 
drawn the attention of various investigators due to their uses in 
astrophysics, geophysics, engineering applications and the control 
of aerodynamic boundary layer. The MHD free convective stream 
flows were assessed for a plate put at heat flux with oscillations of 
surface. The unsteady free convection flow of a viscous incom-
pressible fluid delved through a highly porous medium, bounded 
by a vertical infinite moving plate, has been discussed by many 
researchers [35–39]. During the evaluation of the intricate inter-
play of thermal diffusion, chemical reaction and heat source, it is 
necessary to consider all of these as being under the influence of 
the Soret effect. The fluid is grey, absorbing and emitting, and yet 
non-scattering, adding complexity to the problem. This research 
sheds light on the complex dynamics of fluid flow through porous 
media, offering valuable implications for various practical applica-
tions and opening doors to further investigations in this captivating 
area of study. The transport of heat along with mass was clarified 
in the magneto-biofluid flow with Joule effect via a non-Darcian 
porous medium [40, 41]. 

Extensive investigations of the magnetohydrodynamic mixed 
convective stream flow passing through the upright flat surface 
were organised under the numerous applications of MHD flow 
through the porous type of medium. In a comprehensive investiga-
tion [42–46], the combined influences of Soret and Joule effects 
were thoroughly analysed on the magnetohydrodynamic mixed 

convective flow of an electrically conducting, incompressible and 
viscous fluid past an infinite vertical porous plate. The unique 
exploration provided valuable insights into the complex dynamics 
of MHD mixed convective flows, particularly in the presence of 
porous media and Hall effects. These findings are significant for 
various engineering applications, especially those involving heat 
and mass transfer phenomena. The state of the unsteady flow for 
free convective stream was represented under the thermal as well 
as mass diffusion in the environment of Hall impact. The influence 
of Hall current on the unsteady free convection flow of an electri-
cally conducting, viscous incompressible fluid was explored [47–
49]. The flow occurred past a fluctuating porous flat plate, with 
internal heat absorption/generation, and in the presence of foreign 
gases. The study considered various parameters, including the 
Hall current, the hydromagnetic parameter, the Grashoff number 
for heat transfer, the Grashoff number for mass transfer, the 
internal heat absorption/generation parameter, the transpiration 
parameter, the Schmidt parameter and the chemical reaction 
parameter. Overall, this investigation contributes valuable insights 
into the intricate interactions between Hall current, magnetic force, 
thermal buoyancy and heat generation/absorption, enriching our 
understanding of complex fluid dynamics and heat transfer phe-
nomena. The effect of MHD on unsteady oscillatory Couette flow 
through porous media and the influence of the radiation and relat-
ed chemical reactions were also investigated in an unsteady state 
magnetohydrodynamic free convection flow with the transfer of 
mass over a heated upright porous surface rooted in highly po-
rous type of median [50, 51]. The unsteady natural oscillatory 
convective Couette flow was demonstrated via a variable perfo-
rated type of median with the effect of chemical species concen-
tration [52, 53]. Under the presumption of varying permeability, the 
impact of related chemical reactions on the flow of micropolar fluid 
reported the replication of the microscopic effects owing to the 
local behaviour and micro-motion of the liquid particles. The influ-
ence of Joule heating on the steady two-dimensional flow of an 
incompressible micropolar fluid over a flat deformable sheet was 
investigated [54–56], with the investigation uncovering that the 
presence of second-order slip plays a constructive role in ensuring 
flow stability, during both the stretching and shrinking of the de-
formable surface. Overall, these insightful results contribute to our 
understanding of the interplay between Joule heating and mi-
cropolar fluid flow over deformable sheets, offering potential impli-
cations in diverse fields, ranging from engineering applications to 
scientific advancements. Recently, the impact of species chemical 
reactivity as well as the prevalence of radiation over the MHD flow 
through a relocating perpendicular perforated flat surface, togeth-
er with that of the source of heat and suction, has been evaluated 
in the analogous research literature. The behaviour of a two-
dimensional incompressible magnetohydrodynamic fluid flowing 
over a linear stretching sheet was investigated considering the 
effects of suction or injection and convective boundary conditions 
[57, 58]. To analyse the system, a scaling group transformation 
method was employed, which helps simplify the governing equa-
tions by revealing certain invariance properties. These studies 
contribute to a deeper understanding of the intricate fluid dynam-
ics in the presence of magnetic fields and various boundary condi-
tions, and the achieved agreement validates the reliability of the 
utilised numerical approach. 

This research paper introduces a novel study of the combined 
effects of radiation and chemical reactions in a rotating porous 
medium. It investigates the impact of a magnetic field on unsteady 
state natural convective chemically reacted flow over an infinite 
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upright plate, considering a revolving condition with a permeable 
median. The inclusion of periodic thermal and mass diffusion at 
the upright surface adds complexity. The study employs a regular 
perturbation method to obtain investigational solutions for flow 
characteristics. The findings are presented graphically, providing a 
clear visualisation of the influence of different parameters on flow-
related characteristics. This comprehensive analysis offers valua-
ble insights into fluid dynamics and heat transfer in this unex-
plored scenario. 

2. MATHEMATICAL FORMULATION 

We considered the unsteady viscous incompressible flow 
through electrically conducting and chemically reacting the fluid by 
means of a foraminate median, inhabiting a hemi-infinite area of 
space confined by an upright endless foraminate plate in a revolv-
ing tract, when the temperature and mass flux of the plate area 
change with respect to the length of time. Now we assume the 
impact of radiations on an upright plate that is under a similar 
static magnetic field and suction velocity, which are exerted in a 
directional way that is vertical to the surface. An upright endless 
foraminate plane area revolving around a perpendicular axis of a 

vertical plane with the constant angular velocity  subjected to a 
viscous fluid embedded in porous medium is considered. At the z* 

 0 plane, a vertical porous plane is considered with the z*-axis 
perpendicular to this plane. The x*-axis is considered in a perpen-
dicular upward direction while the y*-axis is in the normal direction 

to the z*  0 plane. The stream flow is considered to be along with 

the plane z*  0. The schematic of flow configuration is given in 
Fig. 1. Now, considering the above assumptions, all the physical 
variable quantities, excluding the pressure ‘p’, are only the func-
tion of direction z* and time t*. 

 
Fig. 1. Schematic of flow configuration 

The mass and momentum conservation equations along with 
the transfer of energy in the revolving frame are specified below 
[50]: 

 
𝜕𝑤∗

𝜕𝑧∗
= 0,                                                   (1) 

 
𝜕𝑢∗

𝜕𝑡∗
+𝑤∗ 𝜕𝑢

∗

𝜕𝑧∗
− 2𝛺𝑣∗ = 𝑔𝛽(𝑇∗ − 𝑇∞

∗ ) + 𝑔𝛽/(𝐶∗ − 𝐶∞
∗ ) 

+𝜈
𝜕2𝑢∗

𝜕𝑧*2
−

𝜈 𝑢∗

𝑘∗
−

(𝐽×𝐵⃗⃗)

𝜌
,                                                       (2) 

𝜕𝑣∗

𝜕𝑡∗
+ 𝑤∗ 𝜕𝑣

∗

𝜕𝑧∗
+ 2𝛺𝑢∗ = 𝜈

𝜕2𝑣∗

𝜕𝑧*2
−

𝜈𝑣∗

𝑘∗
−

(𝐽×𝐵⃗⃗)

𝜌
,                       (3) 

0 = −
1

𝜌
 
𝜕𝑝∗

𝜕𝑧∗
−

𝜈𝑤∗

𝑘∗
−

(𝐽×𝐵⃗⃗)

𝜌
,                                                     (4) 

where the terms of the right-hand side from Eq. (2) to Eq. (4) 
represent the occurrence of the Lorentz force attributable to the 

magnetic field ‘𝐵⃗⃗’, which is specified by: 

 𝐽 × 𝐵⃗⃗ = 𝜎(𝑣⃗ × 𝐵⃗⃗) × 𝐵⃗⃗                                                        (5) 

Putting the value of Eq. (5) in Eqs (2)–(4), the resultant new 
forms of equations are given by: 

 
𝜕𝑢∗

𝜕𝑡∗
+𝑤∗ 𝜕𝑢

∗

𝜕𝑧∗
− 2𝛺𝑣∗ = 𝑔𝛽(𝑇∗ − 𝑇∞

∗ ) + 𝑔𝛽/(𝐶∗ − 𝐶∞
∗ ) 

+𝜈
𝜕2𝑢∗

𝜕𝑧*2
−

𝜈 𝑢∗

𝑘∗
−

𝜎𝐵2

𝜌
𝑢∗,                                                           (6)   

𝜕𝑣∗

𝜕𝑡∗
+ 𝑤∗ 𝜕𝑣

∗

𝜕𝑧∗
+ 2𝛺𝑢∗ = 𝜈

𝜕2𝑣∗

𝜕𝑧*2
−

𝜈𝑣∗

𝑘∗
−

𝜎𝐵2

𝜌
𝑣∗,                     (7)                                                                                                                                            

0 = −
1

𝜌
 
𝜕𝑝∗

𝜕𝑧∗
−

𝜈𝑤∗

𝑘∗
−

𝜎𝐵2

𝜌
𝑤∗,                                                  (8) 

𝜕𝑇∗

𝜕𝑡∗
+ 𝑤∗ 𝜕𝑇

∗

𝜕𝑧∗
= 𝛼

𝜕2𝑇8

𝜕𝑧*2
−

1

𝜌𝐶𝑝

𝜕𝑞𝑟
∗

𝜕𝑧∗
,                                        (9)                                                                                                                                                          

𝜕𝐶∗

𝜕𝑡∗
+ 𝑤∗ 𝜕𝐶

∗

𝜕𝑧∗
= 𝐷

𝜕2𝐶∗

𝜕𝑧*2
− 𝑘1(𝐶

∗ − 𝐶∞
∗ ).                               (10) 

The boundary conditions of the problem are as below: 

  

z  =   0 :𝑢∗  =   0,  𝑣∗  =   0, 
𝜕𝑇∗

𝜕𝑧∗
  =  -

𝑞𝑤
∗

𝜅
(1 + 𝜀𝑒i 𝜔*t*),

𝜕𝐶∗

𝜕𝑧∗
  =  -

𝑚𝑤
∗

𝐷
(1 + 𝜀𝑒i 𝜔*t*)

z → ∞: 𝑢∗  → 0,𝑣∗ → 0,𝑇∗ → 𝑇∞
∗ , 𝐶∗ → 𝐶∞

∗ . }
 

 

                                                                     (11) 

For the constant value of the suction, from Eq. (1), we obtain: 

w –w0                                                                                    (12) 

Assuming u + iv  U with Eq. (12), Eqs (6) and (7) can be writ-
ten as: 

 
𝜕𝑈∗

𝜕𝑡∗
−𝑤0

𝜕𝑈∗

𝜕𝑧∗
+ 2𝑖𝛺𝑈∗ = 𝑔𝛽(𝑇∗ − 𝑇∞

∗ ) + 𝑔𝛽/(𝐶∗ − 𝐶∞
∗ ) 

+𝜈
𝜕2𝑈∗

𝜕𝑧*2
−

𝜈𝑈∗

𝑘∗
−

𝜎𝐵2𝑈∗

𝜌
                                                           (13)                                                                         

Now, we introduce the dimensionless quantities, as the follow-
ing: 

z  =   
𝑤0𝑧

∗

𝜈
,U  =   

𝑈∗

𝑤0
,  t  =   

𝑡∗𝑤0
2

𝜈
,  𝜔  =   

𝜈𝜔∗

𝑤0
2 ,  

𝜃 =  
𝜅(𝑇∗−𝑇∞

∗ )𝑤0

𝑞𝑤
∗ 𝜈

, k =   
𝑤0
2𝑘∗

𝜈2
, R(rotation parameter) =  

𝛺𝜈

𝑤0
2,   

α (thermaldiffusivity) =
𝜅

𝜌𝐶𝑝
, Gr (Grash of number) =  

gβqw
∗ ν2

w0
4κ

,  

Pr (Prandtal number) =  
ν

α
,     Gc (modified Grash of number) =

 
gβ mw

∗ ν2

w0
4D

,   Sc (Schmidt number)  =
𝜈

𝐷
, E(radiationparameter)=

4𝜈𝐼

𝜌𝐶𝑝𝑤0
2,  M(Hartmannnumber) = √

𝜎𝐵2𝜈

𝜌𝑤0
2   and 

𝛾(dimension less chemical reaction parameter) =
𝑘1𝜈

𝑤0
2 .  

The radiative heat flux, as ascertained in the study of Cogley 
et al. [59], can be expressed in the following form: 
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𝜕𝑞𝑟
∗

𝜕𝑧∗
= 4(𝑇∗ − 𝑇∞

∗ )𝐼∗,  

𝐼∗   = ∫ 𝜅𝜆𝜔
𝜕𝑒𝑏𝜆

𝜕𝑇∗
𝑑𝜆,

∞

0
  

where κωλis the absorption coefficient at the wall, ebλ is Planck’s 
function. 

Now, substituting the dimensionless quantities in Eqs (13), (9) 
and (10), the resultantly obtained dimensionless equations are: 

𝜕𝑈

𝜕𝑡
− 

𝜕𝑈

𝜕𝑧
+ 2𝑖 RU = Gr 𝜃 + 𝐺𝑐𝐶 +

𝜕2𝑈

𝜕𝑧2
−

𝑈

𝑘
−𝑀2𝑈,       (14)                                                                                                                         

𝜕𝜃

𝜕𝑡
− 

𝜕𝜃

𝜕𝑧
=

1

𝑃𝑟
𝜕2𝜃

𝜕𝑧2

                                                              (15) 

𝜕𝐶

𝜕𝑡
− 

𝜕𝐶

𝜕𝑧
=

1

𝑆𝑐

𝜕2𝐶

𝜕𝑧2
− 𝛾𝐶,                                                          (16) 

and the corresponding boundary conditions of the problem em-
bodied in Eq. (11) are mentioned by: 

z  =   0 :U  =   0,  
𝜕𝜃

𝜕𝑧

= −(1  + 𝜀𝑒i 𝜔𝑡),
𝜕𝐶

𝜕𝑧
 

= −(1  + 𝜀𝑒i 𝜔𝑡)
z → ∞:U → 0,𝜃 → 0, 𝐶 → 0.}

 
 

 
 

                                            (17)                                                                  

2.1. Solution of the problem  

Since the amplitude  (< < 1) of the variation is extremely 
small, we accordingly consider the solutions of the problem in the 
following arrangement: 

 

𝑈(𝑧, 𝑡) = 𝑈0(𝑧) + 𝜀𝑈1(𝑧)𝑒
𝑖𝜔𝑡+. . . . . . . . . . . . .

𝜃(𝑧, 𝑡) = 𝜃0(𝑧) + 𝜀𝜃1(𝑧)𝑒
𝑖𝜔𝑡+. . . . . . . . . . . . .

𝐶(𝑧, 𝑡) = 𝐶0(𝑧) + 𝜀𝐶1(𝑧)𝑒
𝑖𝜔𝑡+. . . . . . . . . . . . .

}                  (18) 

Substituting Eq. (18) in Eqs (14)–(16), and equating it to the 

coefficients of various powers of  along with ignoring 2, 3 …, we 
thus obtain: 

𝑈0
//
+ 𝑈0

/
− 2𝑖R U0 −

𝑈0

𝑘
−𝑀2𝑈0 = −Gr 𝜃0 − 𝐺𝑐𝐶0,       (19) 

𝑈1
//
+ 𝑈1

/
− 2𝑖R U1 − 𝑖𝜔 U1 −

𝑈1

𝑘
−𝑀2𝑈1  = −Gr 𝜃1 −

𝐺𝑐𝐶1,                                                                                     (20)  

𝜃0
//
+ Pr  𝜃0

/
− 𝐸 𝑃𝑟 𝜃0 = 0,                                                 (21)  

𝜃1
//
+ Pr 𝜃1

/
− (𝐸 + 𝑖𝜔 )𝜃1Pr  0  .                                        (22) 

                                       

𝐶0
//
+ Sc  𝐶0

/
− 𝛾𝑆𝑐𝐶0 = 0,                                      (23)                          

                    

𝐶1
//
+ Sc 𝐶1

/
− 𝑖𝜔 Sc𝐶1 − 𝛾𝑆𝑐𝐶1 =  0  .                               (24)  

The analogous boundary conditions Eq. (17) come in order to  
the following: 

z  =   0 :𝑈0  =   0,𝑈1 = 0, 
𝜕𝜃0

𝜕𝑧
= −1,

𝜕𝜃1

𝜕𝑧
= −1,

𝜕𝐶0

𝜕𝑧
= −1,

𝜕𝐶1

𝜕𝑧
= −1,

z → ∞:𝑈0  → 0,𝑈1 → 0, 𝜃0 → 0, 𝜃1 → 0, 𝐶0 → 0,𝐶1 → 0.
}                                                                                                                

                                                                                                   (25) 

Solving Eqs (19)–(24) subject to the analogous boundary 
conditions expressed in Eq. (25), we obtain: 

 

𝑈0(𝑧) = 𝑎3(𝑒
−𝑎1𝑧 − 𝑒−𝑎2𝑧) + 𝑎4(𝑒

−𝑏1𝑧 − 𝑒−𝑎2𝑧)        (26)                       
        

𝑈1(𝑧)  =  a8(𝑒
−𝑎5𝑧 − 𝑒−𝑎7𝑧) + 𝑎9(𝑒

−𝑎6𝑧 − 𝑒−𝑎7𝑧)       (27)                          
                                                   

𝜃0(𝑧)  =  
1

𝑎1
 e−𝑎1 z,                                                     (28)

            

𝜃1(𝑧)  =   
1

𝑎5
𝑒−𝑎5𝑧 .                                                     (29)                                      

         

𝐶0(𝑧)  =  
1

𝑏1
 e−𝑏1 z,                                                     (30)                                                          

𝐶1(𝑧)  =  
1

𝑎6
 e−𝑎6 z,                                                                (31) 

where, 

𝑎1 =
1

2
[𝑃𝑟 +√𝑃𝑟2 + 4𝐸𝑃𝑟],     

𝑏1 =
1

2
[𝑆𝑐 + √𝑆𝑐2 + 4𝛾𝑆𝑐]  

𝑎2 =
1

2
[1 + √1 + 4(2𝑖𝑅 +𝑀2 +

1

𝑘
)]      

𝑎3  =  
−Gr

𝑎1(𝑎1
2−𝑎1−(2𝑖𝑅+𝑀

2+
1

𝑘
))
 ,  

𝑎4  =  
−Gc

𝑏1(𝑏1
2−𝑏1−(2𝑖𝑅+𝑀

2+
1

𝑘
))
 ,   

𝑎5 =
1

2
[𝑃𝑟 +√𝑃𝑟2 + 4𝑃𝑟(𝐸 + 𝑖𝜔)]                

𝑎6 =
1

2
[𝑆𝑐 + √𝑆𝑐2 + 4𝑖𝜔𝑆𝑐]   

𝑎7 =
1

2
[1 + √1 + 4(2𝑖𝑅 + 𝑖𝜔) +

4

𝑘
+ 4𝑀2]      

𝑎8  =  
−Gr

𝑎5(𝑎5
2−𝑎5−(2𝑖𝑅+𝑖𝜔+𝑀

2+
1

𝑘
))
 ,  

𝑎9  =  
−Gc

𝑎6(𝑎6
2−𝑎6−(2𝑖𝑅+𝑖𝜔+𝑀

2+
1

𝑘
))
 .  

2.2. Solution 

2.2.1. Steady flow 

By taking 𝑈0 = 𝑢0 + 𝑖𝑣0 in Eq. (26), and consequently al-
lowing for the separation of real as well as imaginary portions, the 

average primary 
𝑢0

𝑤0
 and mean secondary 

𝑣0

𝑤0
 velocity fields are 

ascertained as the following: 
               

𝑢0

𝑤0
= 𝑒3(𝑒

−𝑎1𝑧 − 𝑒−𝑒1𝑧 𝑐𝑜𝑠 𝑒2 𝑧) − 𝑒4𝑒
−𝑒1𝑧 𝑠𝑖𝑛 𝑒2 𝑧

+𝑒5(𝑒
−𝑆𝑐𝑧 − 𝑒−𝑒1𝑧 𝑐𝑜𝑠 𝑒2 𝑧) − 𝑒6𝑒

−𝑒1𝑧 𝑠𝑖𝑛 𝑒2 𝑧
𝑣0

𝑤0
= 𝑒4(𝑒

−𝑎1𝑧 − 𝑒−𝑒1𝑧 𝑐𝑜𝑠 𝑒2 𝑧) + 𝑒3𝑒
−𝑒1𝑧 𝑠𝑖𝑛 𝑒2 𝑧

+𝑒6(𝑒
−𝑆𝑐𝑧 − 𝑒−𝑒1𝑧 𝑐𝑜𝑠 𝑒2 𝑧) + 𝑒5𝑒

−𝑒1𝑧 𝑠𝑖𝑛 𝑒2 𝑧   }
 
 

 
 

,    (32)                            

2.2.2. Unsteady flow 

Substituting the unsteady portions, 

𝑈1(𝑧, 𝑡) = 𝑀𝑟 + 𝑖𝑀𝑖 , 𝐶1(𝑧, 𝑡) = 𝐶𝑟 + 𝑖𝐶𝑖and𝜃1(𝑧, 𝑡) =
𝑇𝑟 + 𝑖𝑇𝑖, respectively, in Eqs (27), (29) and (31), we obtain: 
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[𝑈(𝑧, 𝑡), 𝜃(𝑧, 𝑡), 𝐶(𝑧, 𝑡)] = [𝑈0(𝑧), 𝜃0(𝑧)] + 𝜀𝑒
𝑖𝜔𝑡[(𝑀𝑟 +

𝑖𝑀𝑖), (𝑇𝑟 + 𝑖𝑇𝑖), (𝐶𝑟 + 𝑖𝐶𝑖]                                       (33) 

The primary velocity, secondary velocity and temperature 
along with concentration areas in the components terms with 
fluctuation are given by: 

𝑢

𝑤0
(𝑧, 𝑡) = 𝑢0 + 𝜀(𝑀𝑟 𝑐𝑜𝑠 𝜔 𝑡 − 𝑀𝑖 𝑠𝑖𝑛 𝜔 𝑡)                     (34)        

𝑣

𝑤0
(𝑧, 𝑡) = 𝑣0 + 𝜀(𝑀𝑟 𝑠𝑖𝑛 𝜔 𝑡 + 𝑀𝑖 𝑐𝑜𝑠 𝜔 𝑡)                     (35)        

𝜃(𝑧, 𝑡) = 𝜃0 + 𝜀(𝑇𝑟 𝑐𝑜𝑠 𝜔 𝑡 − 𝑇𝑖 𝑠𝑖𝑛 𝜔 𝑡)                          (36)                                          

𝐶(𝑧, 𝑡) = 𝐶0 + 𝜀(𝐶𝑟 𝑐𝑜𝑠 𝜔 𝑡 − 𝐶𝑖 𝑠𝑖𝑛 𝜔 𝑡)                      (37)  

Taking 𝜔𝑡 =
𝜋

2
 in Eqs (34)–(37), we obtain the transient ex-

pressions for the primary velocity, secondary velocity and temper-
ature, as well as the concentration, as the following: 

𝑢

𝑤0
(𝑧 ,

𝜋

2𝜔
) = 𝑢0(𝑧)  − 𝜀𝑀1(𝑧),                                      (38)        

𝑣

𝑤0
(𝑧 ,

𝜋

2𝜔
) = 𝑣0(𝑧)  + 𝜀𝑀𝑟(𝑧),                                      (39)       

𝜃 (𝑧 ,
𝜋

2𝜔
) = 𝜃0(𝑧)  − 𝜀𝑇𝑖(𝑧).                                      (40)                         

𝐶 (𝑧 ,
𝜋

2𝜔
) = 𝐶0(𝑧)  − 𝜀𝐶𝑖(𝑧).                       (41)                 

where 

𝑀𝑟 = 𝑒17[𝑒
−𝑒7𝑧 𝑐𝑜𝑠 𝑒8 𝑧 − 𝑒

−𝑒11𝑧 𝑐𝑜𝑠 𝑒12 𝑧]
− 𝑒18[−𝑒

−𝑒7𝑧 𝑠𝑖𝑛 𝑒8 𝑧 + 𝑒
−𝑒11𝑧 𝑠𝑖𝑛 𝑒12 𝑧] 

+𝑒23[𝑒
−𝑒9𝑧 𝑐𝑜𝑠 𝑒10 𝑧 − 𝑒

−𝑒11𝑧 𝑐𝑜𝑠 𝑒12 𝑧] −
𝑒24[−𝑒

−𝑒9𝑧 𝑠𝑖𝑛 𝑒10 𝑧 + 𝑒
−𝑒11𝑧 𝑠𝑖𝑛 𝑒12 𝑧]  

𝑀𝑖 = 𝑒17[−𝑒
−𝑒7𝑧 𝑠𝑖𝑛 𝑒8 𝑧 + 𝑒

−𝑒11𝑧 𝑠𝑖𝑛 𝑒12 𝑧]
+ 𝑒18[𝑒

−𝑒7𝑧 𝑐𝑜𝑠 𝑒8 𝑧 − 𝑒
−𝑒11𝑧 𝑐𝑜𝑠 𝑒12 𝑧] 

+𝑒23[−𝑒
−𝑒9𝑧 𝑠𝑖𝑛 𝑒10 𝑧 + 𝑒

−𝑒11𝑧 𝑠𝑖𝑛 𝑒12 𝑧] +
𝑒24[𝑒

−𝑒9𝑧 𝑐𝑜𝑠 𝑒10 𝑧 − 𝑒
−𝑒11𝑧 𝑐𝑜𝑠 𝑒12 𝑧] 

𝑇𝑖 = −
𝑒−𝑒7𝑧

𝑒7
2+𝑒8

2 [−𝑒8 𝑐𝑜𝑠 𝑒8 𝑧 − 𝑒7 𝑠𝑖𝑛 𝑒8 𝑧] 

𝐶𝑖 =
𝑒−𝑒9𝑧

𝑒9
2+𝑒10

2 [−𝑒9 𝑠𝑖𝑛 𝑒10 𝑧 − 𝑒10 𝑐𝑜𝑠 𝑒10 𝑧]  

𝑎2 = 𝑒1 + 𝑖𝑒2, 𝑎3 = 𝑒3 + 𝑖𝑒4, 𝑎4 = 𝑒5 + 𝑖𝑒6, 𝑎5 = 𝑒7 + 𝑖𝑒8, 
𝑎6 = 𝑒9 + 𝑖𝑒10, 𝑎7 = 𝑒11 + 𝑖𝑒12, 𝑎8 = 𝑒17 + 𝑖𝑒18, 𝑎9

= 𝑒23 + 𝑖𝑒24 

𝑒1 =

1

2
[1 + √√[1 + 4(𝑀2 +

1

𝑘
)]2 + 64𝑅2

[1+4(𝑀2+
1

𝑘
)]2−64𝑅2

[1+4(𝑀2+
1

𝑘
)]2+64𝑅2

]  

𝑒2 =
1

2
√√[1 + 4(𝑀2 +

1

𝑘
)]2 + 64𝑅2

16𝑅[1+4(𝑀2+
1

𝑘
)]

[1+4(𝑀2+
1

𝑘
)]2+64𝑅2

  

𝑒3 = −
𝐺𝑟[𝑎1

3−𝑎1
2−(𝑀2+

1

𝑘
)𝑎1]

[𝑎1
3−𝑎1

2−(𝑀2+
1

𝑘
)𝑎1]

2+4𝑅2𝑎1
2
  

𝑒4 = −
2𝑅𝑎1𝐺𝑟

[𝑎1
3−𝑎1

2−(𝑀2+
1

𝑘
)𝑎1]

2+4𝑅2𝑎1
2
         

𝑒5 = −
𝐺𝑐[𝑆𝑐3−𝑆𝑐2−(𝑀2+

1

𝑘
)𝑆𝑐]

[𝑆𝑐3−𝑆𝑐2−(𝑀2+
1

𝑘
)𝑆𝑐]2+4𝑅2𝑆𝑐2

  

𝑒6 = −
2𝑅𝑆𝑐𝐺𝑐

[𝑆𝑐3−𝑆𝑐2−(𝑀2+
1

𝑘
)𝑆𝑐]2+4𝑅2𝑆𝑐2

  

𝑒7 =
1

2
𝑃𝑟 +√√(𝑃𝑟2 + 4𝐸 𝑃𝑟)2 + 16𝜔2𝑃𝑟2.   

(𝑃𝑟2+4𝐸 𝑃𝑟)2−16𝜔2𝑃𝑟2

(𝑃𝑟2+4𝐸 𝑃𝑟)2+16𝜔2𝑃𝑟2
  

𝑒8 =
1

2
√√(𝑃𝑟2 + 4𝐸 𝑃𝑟)2 + 16𝜔2𝑃𝑟2.   

8𝑃𝑟𝜔(𝑃𝑟2+4𝐸 𝑃𝑟)

(𝑃𝑟2+4𝐸 𝑃𝑟)2+16𝜔2𝑃𝑟2
  

𝑒9 =
1

2
[𝑆𝑐 + √√𝑆𝑐4 + 16𝜔2𝑆𝑐2.

𝑆𝑐4−16𝜔2𝑆𝑐2

𝑆𝑐4+16𝜔2𝑆𝑐2
]  

𝑒10 =
1

2
[√√𝑆𝑐4 + 16𝜔2𝑆𝑐2.

8𝜔𝑆𝑐3

𝑆𝑐4+16𝜔2𝑆𝑐2
]  

𝑒11 =

1

2
[1 +

√√(1 +
4

𝑘
+ 4𝑀2)2 + (8𝑅 + 4𝜔)2.

(1+
4

𝑘
+4𝑀2)2−(8𝑅+4𝜔)2

(1+
4

𝑘
+4𝑀2)2+(8𝑅+4𝜔)2

]    

𝑒12 =

1

2
[√√(1 +

4

𝑘
+ 4𝑀2)2 + (8𝑅 + 4𝜔)2.

2(1+
4

𝑘
+4𝑀2)(8𝑅+4𝜔)

(1+
4

𝑘
+4𝑀2)2+(8𝑅+4𝜔)2

]  

𝑒13 = 𝑒7
2 − 𝑒8

2 − 𝑒7 −𝑀
2 −

1

𝑘
, 𝑒14 = 2𝑒7𝑒8 − 𝑒8 − 2𝑅 − 𝜔  

𝑒15 = 𝑒7𝑒13 − 𝑒8𝑒14, 𝑒16 = 𝑒8𝑒13 + 𝑒7𝑒14, 𝑒17 =

−
𝐺𝑟𝑒15

𝑒15
2 +𝑒16

2 , 𝑒18 =
𝐺𝑟𝑒16

𝑒15
2 +𝑒16

2   

𝑒19 = 𝑒9
2 − 𝑒10

2 − 𝑒9 −𝑀
2 −

1

𝑘
, 𝑒20 = 2𝑒9𝑒10 − 𝑒10 −

2𝑅 − 𝜔  

𝑒21 = 𝑒9𝑒19 − 𝑒10𝑒20, 𝑒22 = 𝑒10𝑒19 − 𝑒9𝑒20, 𝑒23 =

−
𝐺𝑐𝑒21

𝑒21
2 +𝑒22

2 , 𝑒24 =
𝐺𝑟𝑒22

𝑒21
2 +𝑒22

2 .  

It is critical to understand the impact of the Grashoff numbers 

and magnetic field on mean skin-friction at 𝑧 = 0 after learning 
about the mean flow velocity field, and the same is provided in the 
form: 

𝜏 ∗= 𝜇 (
𝑑𝑈∗

𝑑𝑧∗
)
𝑧∗=0

,                                       (42)              

Further, in non-dimensional form, it is provided as follows: 

𝜏 =
𝜏∗ 𝜐

𝜇 𝑤0
2 = (

𝜕𝑈

𝜕𝑧
)
𝑧=0

= (
𝜕𝑈0

𝜕𝑧
)
𝑧=0

+ 𝜀 (
𝜕𝑈1

𝜕𝑧
)
𝑧=0

𝑒𝑖𝑤𝑡 .         (43)                                                                                

We denote the mean skin-friction by: 

𝜏𝑚 = (
𝑑𝑢0

𝑑𝑧
)
𝑧=0

  .                                                      (44)  

Now, after having ascertained the temperature field, we move 

on to examining how the rate of heat transfer is affected by . 
The Nusselt number can be used to calculate the rate of heat 
transfer. 

𝑁𝑢 = −
𝑞𝜔
∗ 𝜐

𝑘 𝑤0 (𝑇
∗ −𝑇∞

∗ )
= (

𝜕𝜃

𝜕𝑧
)
𝑧=0

= (
𝜕𝜃0

𝜕𝑧
)
𝑧=0

+

𝜀 (
𝜕𝜃1

𝜕𝑧
)
𝑧=0

𝑒𝑖𝜔𝑡                                                                      (45) 
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3. VALIDATION 

To validate the findings of the present work vis-à-vis those of 
Sharma et al. [50] (while neglecting the rotation and radiation 
effect), a comparison of the velocity and transient temperature 
profiles is carried out, as indicated in Figs. 2 and 3. It is observed 
that there is good agreement between the present work and the 
previous research. 

 
Fig. 2. Comparative analysis of mean primary velocity profile 

 

Fig. 3. Comparative analysis of transient temperature profiles 

4. GRAPHICAL PRESNTATION AND DISCUSSION 

After obtaining the various flow characteristics, the numerical 
calculations are made for the various numerical solutions of the 
thermal Grashoff number ‘Gr’, the solutal Grashoff number ‘Gc’, 

the Schmidt number ‘Sc’, the frequency , the permeability pa-
rameter k, the radiation parameter E and the Hartmann number (a 
magnetic field parameter) M. Approximately 0.71 is taken as the 
Prandtl, which, in the air, is designated at 20°C. The Schmidt 
numbers are considered in the study to show the utmost common 
diffusive chemical species present in the air. The values of the 
Schmidt number ‘Sc’ are 0.60 and 1.002 in the air, which repre-
sents the species H2O and CO2 in the air at 25°C and 1 atmos-
pheric pressure. The values of various numbers such as Gc, Gr, 

k, M,  and E are determined based on the own judgement of the 
present researchers. 

 
Fig. 4. Mean temperature and mean concentration profiles 

It has been noted from Eq. (26) that the steady state portion of 
the average primary velocity value for its field is having a two-
layer characteristic, and these two layers been acknowledged as 
the suction and thermal layers. The existence of the suction layer 
is because of the revolution and medium porousness, while the 
thermal layer exists because of an interplay of the thermal field 
generated by the radiation heat transfer and the velocity related to 
its field, as reported by Cogley et al. [59] and Xin et al. [60]; how-
ever, this interplay depends upon the Grashof number as well as 
the radiation parameters. 

The profiles of the mean temperature as well as the mean 
concentration are represented in Fig. 4. It has been sighted that 
the mean temperature as well as the mean concentration de-
creases exponentially. The mean temperature reduces with the 
rise in the radiation-pertaining parameter E. From the quality point 
of view, the results are acceptable with some exceptions, since, 
due to the impact of the radiative heat transfer, the rate of energy 
transportation to the relevant fluid reduces with the reduction of 
the temperature of the fluid. 

It has been perceived as well from Fig. 4 that the mean level 
of the concentration for the fluid decreases with the upturn in the 
Schmidt number, which indicates that the mass diffusivity increas-
es the concentration level with steady rate. Moreover, it is also 
detected from Fig. 1 that there was a fall in the concentration 

under the impact of the parameter  related to the chemical reac-
tion. Similar trends can be observed in the researches of Sharma 
and Gandhi [61] and Li et al. [62]. 

The mean and transient primary velocities are presented in 
Figs. 5 and 7 for arbitrary values of the thermal Grashof number 

Gr  2, the parameter related to permeability k  0.5, the rotation 

parameter R  2 and the Prandtl number Pr  0.71 (air). The 
Grashof number ‘Gc’ is expressed by the ratio between the buoy-
ancy force species and the hydrodynamic force due to viscosity. It 
has been observed that the mean and transient primary velocities 
rise significantly with an increase of the buoyancy force for spe-
cies, and this phenomenon is in good agreement with the findings 
of Sharma et al. [63]. The mean and transient primary velocities 
are supposed to drop along with the upsurge of the parameter M 
of the magnetic field. This happens due to the use of the magnetic 
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field in the transverse direction, the consequence of which is the 
production of a resistive kind of force known as the Lorentz force. 
This is similar to a drag force, and it has a tendency to oppose the 
flow of fluid, together with a subsequent reduction in its velocity. 

 

Fig. 5. Mean primary velocity profiles for Gr  2, k  0.5, R  2  

 and Pr  0.71 

 

Fig. 6. Mean secondary velocity profiles for Gr = 2, k = 0.5, R = 2  
 and Pr = 0.71. 

Fig. 6 demonstrates the variation of the profiles pertaining to 
the mean secondary velocity with the variation of the various 
parameters. It is seen that the mean secondary velocity rises both 
with increasing E and M. Interestingly, it has been found that the 
secondary velocity rises due to Gc close to the plate and then 
reduces remotely from the upright plate. 

It is also observed that the mean secondary velocity falls un-
der the effect of the Schmidt number ‘Sc’. Interestingly, it is noted 
that the mean secondary velocity initially fall under the impact of 

the chemical reaction parameter , while a reverse impact is seen 
remotely from the plate. It has also been perceived that the mean 
and transient primary velocities become subject to upsurges with 
the radiation parameter E, while reverse phenomena are ob-
served for the Schmidt number ‘Sc’ along with the chemical reac-

tion parameter . Moreover, from Fig. 7, we infer that the transient 

primary velocity accelerates with frequency of oscillation . 

 

 

Fig. 7. Transient primary velocity profiles for Gr  2, k  0.5, ε  2  

 and Pr  0.71 

 

Fig. 8. Transient secondary velocity profiles for Gr  2, k  0.5,  

 Pr  0.71,  R  2 and ε  2 

Fig. 8 exhibits the variation of transient secondary velocity 

against span-wise coordinate z under the influence of Gc, E, M,  
and Sc. The transient secondary velocity accelerates with the 
parameter M related to the magnetic field and the Schmidt num-
ber ‘Sc’, whereas it falls under the effect of the radiation parame-

ter E and the frequency of fluctuation . From Fig. 8, we observe 
that the transient secondary velocity underwent a rise owing to 
augmentation in the solutal’s Grashof number ‘Gc’ near the plate, 
whereas a reverse effect was observed far away from the plate. 
Moreover, from Fig. 8, it is revealed that transient secondary 
velocity increases as rise occurs in the chemical reaction’s pa-

rameter . This leads us to the understanding that the reduction in 
the chemical species directs towards a boost in the magnitude of 
the concentration field, and resultantly, there is an enhancement 
in the buoyancy impacts owing to the concentration gradients, 
which accelerates the fluid flow field. 
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Fig. 9. Transient temperature profiles for Pr  0.71 and ε  0.2 

 
Fig. 10. Transient concentration profiles for ε  0.2 

A similar trend can be observed in previous studies in the lit-
erature [64–66]. The plot of the transient temperature profile for 
numerous values of radiation parameter as well as frequency of 
fluctuation is provided in Fig. 9. It is noticed that the transient 
temperature reduces along with the increase in the radiation 
parameter E, and this reduction is attributed to the fact that, under 
the existence of the thermal buoyancy force, the rise in the pa-
rameter E related to radiation guides towards the rise of the 
boundary layer concentration as well as towards the dropping of 
the rate of the heat flux. Further, it also ascertained that the tem-
perature accelerated with the frequency of oscillation in the vici-
nage of the vertical surface, while it decelerated remotely from the 
plate. 

Fig. 10 describes the impact of Schmidt number, frequency of 

fluctuation and the parameter  related to chemical reaction on the 
transient concentrations. It is also ascertained from Fig. 7 that the 

transient concentration reduces with rising ,  and Sc. For the 

generative reaction  > 0, while the reverse impact is detected, i.e. 
as soon as the reaction parameter rises, the concentration profiles 
become thicker, and accordingly, decreases take place in the 
transient concentration. 

Tab. 1 illustrates the values of Nusselt number with frequency 

of fluctuations . It is observed that they behave similar to a 
cosine wave. Tab. 2 presents the values of mean skin-friction for 
different values of the magnetic field parameter M. It is observed 
that mean skin-friction decreases with increase in the magnetic 
field parameter M, for every value of the Schmidt number ‘Sc’. 

Tab. 1. Values of Nusselt number for   0.2 

 Nu for t = 2 Nu for t = 4 Nu for t = 6 

0 –1.2 –1.2 –1.2 

1 0.9167 0.8692 1.192 

2 0.8692 0.9709 1.1687 

3 1.192 1.1687 1.132 

4 0.9709 0.8084 1.0848 

5 0.8321 1.0816 1.0308 

6 1.1687 1.0848 0.9744 

7 1.0273 0.8074 0.92 

8 0.8084 1.1668 0.8719 

9 1.132 0.9744 0.8341 

10 1.0816 0.8666 0.8095 

Tab. 2. Values of m (mean skin-friction) for Gr  2, Gc  2, E  2, 

             k  0.5, Pr  0.71 and   2 

M Sc = 0.60 Sc = 0.78 Sc = 1.002 

0 1.053428 0.917919 0.814144 

2 0.753157 0.666109 0.597228 

4 0.50047 0.448243 0.405931 

6 0.367434 0.331293 0.301715 

8 0.288942 0.261552 0.239024 

10 0.237704 0.215728 0.197601 

12 0.201763 0.183441 0.168304 

14 0.175202 0.159506 0.146524 

16 0.154792 0.14107 0.129711 

18 0.138624 0.126439 0.116347 

20 0.125506 0.114549 0.105471 

5. CONCLUSIONS 

Assuming the periodical thermal and mass diffusion at the up-
right surface, the investigational solutions are found for flow char-
acteristics by following the regular perturbation method, and the 
impact of different parameters on flow-related characteristics are 
explained and depicted graphically. The results may be useful in 
studying oil or gas and water movement through an oil or gas field 
reservoir, underground water migration, and the filtration and 
water purification processes. 

 The mean and transient primary velocities step-up significantly 
with the increase of the species buoyancy force, while  
a reverse response is observed for the magnetic field parame-
ter M. 

 It has also been noticed that the mean and transient primary 
velocities rise with the radiation parameter E, while reverse 
phenomena are observed for the Schmidt number ‘Sc’ and the 

parameter  pertaining to chemical reaction. 

 The temperature profile accelerated with frequency of oscilla-
tion near the plate, whereas it decelerated far away from 
plate. 
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 It has been observed that transient temperature falls with rise 
in the parameter related to radiation. 

 The transient concentration drops with increasing ,  and Sc. 
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