Identyfikatory
Warianty tytułu
Ab-initio simulation of graphene layer used for IR detector
Języki publikacji
Abstrakty
W artykule przedstawione zostały wyniki symulacji ab-initio z wykorzystaniem oprogramowania MedeA VASP warstwy grafenowej w obecności wybranych materiałów wykorzystywanych w konstrukcji detektora podczerwieni. Symulacje miały za zadanie odpowiedzieć, czy i w jaki sposób zmieniają się parametry warstwy grafenowej w obecności SiO₂ i Al₂O₃. Ocenie poddany został kształt pasm energetycznych.
The article presents the results of ab-initio simulations by the means of Medea VASP tool of graphene layer in the presence of selected materials used in the production of infrared detector. The simulations have been performed to answer whether and how the parameters of the graphene sheet may change in the presence of SiO₂ and Al₂O₃. Assessment has been done on the basis of the energy bands shape. Graphene is a material that has opened new perspectives in the design of electronic devices and launched studies on various 2D materials. The correct determination of the parameters of graphene must take into account the conditions in which the graphene layer operates. Within this work we show preliminary the free layer graphene band structure. Obtaining a correct shape of the energy bands is possible by the means of DFT approach when appropriate mesh in the k domain is used: Δk = 0.05 1/Ä. Simulations of the graphene layer placed and SiO₂ and between SiO₂ and Al₂O₃ confirmed that the shape of band structure remains untouched at Dirac point and p-type doping of graphene layer has been observed for simulated structures.
Wydawca
Rocznik
Tom
Strony
31--32
Opis fizyczny
Bibliogr. 12 poz., rys.
Bibliografia
- [1] V. Ryzhii, M. Ryzhii, (2009)”Graphene bilayer field-effect phototransistor for terahertz and infrared detection.” Physical Review B 79.24: 245311.
- [2] T. Mueller, X. Fengnian Xia, A. Phaedon, (2010): “Graphene photodetectors for high-speed optical communications.” Nature Photonics 4.5, 297–301.
- [3] A. H. C. Neto et al. (2009)”The electronic properties of graphene.” Reviews of modern physics 81.1: 109.
- [4] X. Wang, L. Zhi, K. Müllen, (2008)”Transparent, conductive graphene electrodes for dye-sensitized solar cells.” Nano letters 8.1: 323–327.
- [5] R. G. Parr, 1980, “Density functional theory of atoms and molecules”. Springer Netherlands.
- [6] J. P. Perdew, K. Burke, M. Ernzerhof, (1996)”Generalized gradient approximation made simple.” Physical review letters 77.18: 3865.
- [7] A. D. Becke, (1993) “A new mixing of Hartree-Fock and local density-functional theories.” The Journal of Chemical Physics 98.2: 1372–1377.
- [8] A. V. Krukau, et al. (2006) “Influence of the exchange screening parameter on the performance of screened hybrid functionals.” The Journal of chemical physics 125.22: 224106-224106.
- [9] J. P. Perdew, (1985) “Density functional theory and the band gap problem.” International Journal of Quantum Chemistry 28.S19: 497–523.
- [10] X. F. Fan et al. (2012) “Interaction between graphene and the surface of SiO2.” Journal of Physics: Condensed Matter 24.30: 305004.
- [11] A. ZurutuzaáElorz, (2015) “Highly air stable passivation of graphene based field effect devices.” Nanoscale 7.8: 3558-3564.
- [12] Z. Ao, et al. (2012) “Density functional theory calculations on graphene/α-SiO2 (0001) interface.” Nanoscale research letters 7.1: 1-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6110f784-68de-44d6-9201-b9ed9906d53d