Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Funkcja podstawy promieniowej Synergiczny kontroler terminala oparty na sieci dla siłownika piezoelektrycznego z modelem histerezy Colmana-Hodgdona
Języki publikacji
Abstrakty
This article proposes an intelligent nonlinear control approach based on the concept of combining neural networks and the methodology of synergistic terminal control. We have introduced the notion of convergence in finite time through the improvement induced on the macrovariable. This approach is associated with the approximation criteria of unknown nonlinearities by a radial basis function neural network to a class of PEA piezoelectric actuator positioning mechanisms.RBF weights are adjusted using the terminal attractor concept in the PEA finite time control process.the stability of a closed-loop system is ensured by the Lyapunov method.The simulation results have demonstrated the robustness of the proposed approach and provide good results in terms of tracking the trajectory and provides a better overall performance than that of classical synergetic control.
W artykule zaproponowano inteligentne podejście do sterowania nieliniowego, oparte na koncepcji łączenia sieci neuronowych i metodologii synergistycznego sterowania terminalami. Wprowadziliśmy pojęcie zbieżności w skończonym czasie poprzez poprawę wywołaną makrozmienną. Podejście to wiąże się z aproksymacją kryteriów nieznanych nieliniowości za pomocą sieci neuronowej o promieniowej funkcji bazowej do klasy mechanizmów pozycjonowania siłowników piezoelektrycznych PEA. Wagi RBF są regulowane za pomocą koncepcji atraktora końcowego w procesie kontroli czasu skończonego PEA. Stabilność zamkniętego -pętlę zapewnia metoda Lapunowa. Wyniki symulacji wykazały solidność proponowanego podejścia i zapewniają dobre wyniki w zakresie śledzenia trajektorii oraz zapewniają lepszą ogólną wydajność niż w przypadku klasycznego sterowania synergicznego.
Wydawca
Czasopismo
Rocznik
Tom
Strony
125--129
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
- University of BATNA -2-, Department of Electrical Engineering, Faculty of Technology, Batna, Algeria
autor
- University of Moncton,Department of Electrical Engineering, Faculty of Technology, Moncton, Canada
autor
- University of BATNA -2-, Department of Electrical Engineering, Faculty of Technology, Batna, Algeria
Bibliografia
- [1] Qinou. Z,Nicholas. T, Ferreira. P."Dynamics Modeling and Verification of a large displacement precision preloaded-flexure stage, 43 (2019): 36-45.
- [2] Andrew J.Fleming .,Nanopositioning System With Force Feedback for High- Performance Tracking and Vibration Control, IEEE/ASME Transactions On Mechatronics, 15(2010) ,No. 3, 433-447.
- [3] QW. He, T. Wang, and X. HE., Dynamical modeling and boundary vibration control of a rigid- flexible wing system, IEEE/ASME Transaction on Mechatronics, 25,(2020), No 06, 2711-2721.
- [4] J. Siepmann, F. Siepmann.,Review Modeling of diffusion controlled drug delivery, Journal of Controlled Release, 161(2011), No.02, 351-362
- [5] Krzysztof W, Grzegorz. K, Grzegorz. W, and Jan. A .,Mathematical modelling, numerical and experimental analysis of one-degree- of-freedom oscillator with Duffing-type stiffness, International Journal Of Non-Linear Mechanics, 138, (2022).
- [6] F. Ferrante, F. Gouaisbaut, R. G. Sanfelice, and S.Tarbouriech., State estimation of linear systems in the presence of sporadic measurements,Automatica, . 73(2016), 101-109.
- [7] Chulki Kim, Robert Marsland, and Robert H.Blick.,The Nanomechanical Bit, Review Nano.Micro Small.6136829, 2020,33,Downloaded .from .http://www.doi/10.1002/smll.202001580.
- [8] Haitao Wu, Leijie Lai, Liqiang Zhang and Limin Zhu., Fractional order zero phase error racking control of a novel decoupled 2- DOF compliant micro-positioning stage, J. Micromech. Microeng. 31(2021) p. 12.
- [9] Ziqiang Chi and Qing Xu "Recent Advances in the Control of Piezoelectric Actuator", International Journal of Advanced Robotic Systems.(2014), 11:182.
- [10] Eneko Artexe,Oscar Barambones,Isidro Calvo, Pablo Femandez-Bustamante and ImanolMartin.,Ultraprecise Controller for Piezoelectric Actuators Basedon Deep Learning and Model Predictive Control, Sensors, 23, (2023) 1690.
- [11] Ali Bazei, Mokrane Boudaoud, Massoud Hammasian Ettefagh, Zhiyong Chen, and Steph Régnier., "Displacement sensing by piezoelectric transducers in high-speed lateral nanopositioning, IEEE Sensors Journal, 19, 20, (2019), 9156 - 9165.
- [12] Andrew D. Lewis.,The bountiful intersection of differential geometry,mechanics, and control theory, Annual Review of Control, Robotics, and Autonomous Systems 1,(2018), 1.1– 1.24,http://www.annualreviews.org/http://doi: 10.1146/annurev-control-060117-105033.
- [13] Josef F.,HornNon-Linear Dynamic Inversion Control Design for Rotorcraf, Erospace 6 (2019), 38.doi:10.3390/aerospace603003.
- [14] Zhao. Ferg, Winyu. Liang, Jie.Ling, Xiaohio. Xiao and Kok Kiong Tan, " Integral terminal sliding-mode-based adaptive integral backstepping control for precision motion of a piezoelectric ultrasonic motor", Mechanical Systems and Signal Processing, 144, (2020), 106856, doi:10.1016/j.ymssp.2020.106856.
- [15] A.Ounissi. A.Kaddouri,R.Abdessmed, "Hybrid Approach Control of Micro positioning stage Piezoelectric Actuator (PEA)", J. Intelli Syst. Control, 1,(2022) no. 1, 35-45. doi:10.56578/jisc010104.
- [16] Yung-Yue Chen, Yu-Jen Lan and Yi-Qing Zhang., Robust Control Design Based on Perturbation Cancellation for Micro-Positioning Design with Hysteresis, Actuators,10, (2021), No. 278, doi:10.3390/act10110278.
- [17] Tong Yang, Ning Sun, He Chen and Yongchun Fan., Observer-Based Nonlinear Control for Tower Cranes Suffering From Uncertain Friction and Actuator Constraints With Experimental Verification, IEEE Transactions on Industrial Electronics, 68,(2021) No. 07, 6192-6204, doi: 10.1109/TIE.2020.2992972.
- [18] Anuradha M. Annaswamy and Alexander L.Fradkov.,A Historical Perspective of Adaptive Control and Learning, Annual Reviews in Control, 52,(2021) , 18-41. doi: 10.1016/j.acontrol.2021.10.014.
- [19] Caihao Sun, Zong cheng Liu, Yong Chen, Yang Zhou and Qingyang Qu., Global Adaptive Control for Uncertain Nonlinear Systems under Non-Lipschitz Condition with Quantized States, Electronics,11 (2022), 3160. doi:10.3390/electronics11193160.
- [20] Pil Rip Jeon, Moo Sun Hong and Richard D.Braatz., Compact neural network modeling of nonlinear dynamical systems via the standard nonlinear operator form, Computers and Chemical.Engineering 159 (2022) 107674, doi:10.1016/j.compchemeng.2022.107674.
- [21] Christian Legaard, Gerald Schweiger,Jan Dragona, Claudio Gomes, Alexandros Iosifidis and Mahdi Abkar., Constructing Neural Network Based Models for Simulating Dynamical Systems, ACM Computing Surveys, 55, (2023)No. 11, 1– 34.doi:org/10.1145/3567591.
- [22] Christian Legaard,Pedram Agrand and Mahdi Aliyari Shoorehdeli., Adaptive Model Learning of Neural Networks with UUB Stability for Robot Dynamic Estimation, arXiv:2210.15055v1 [cs.RO] 26 Oct 2022.
- [23] S.Piche and J.Grimm, "Gain confidence of a neural network used for model based control”, International Joint Conference on Neural Networks (IJCNN). IEEE, (2017), 4244–4251, doi:10.1109/IJCNN.2017.7966393.
- [24] P.Agand, M..Shoorehdeli, and Khaki-Sedigh., Adaptive recurrent neural network with lyapunostability learning rules for robot dynamic terms identification, Engineering applications of artificial intelligence,(2017). doi:10.1049/cth2.12137.
- [25] Hui Ma, Hongyi Li, Renquan Lu and Tingwen Huang., Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances, Part of Springer Nature 2. vol. 63, doi:10.1007/s11432-019-2680-1.
- [26] A. Lamb, A. Goyal, Y. Zhang, S. Zhang, A. Courville and Y. Bengio.,Professor forcing: A new algorithm for training recurrent networks, ArXiv preprint arXiv:1610.09038, 2016, doi:10.48550/arXiv1610.09038.
- [27] H. Hamedi, Ch. ben Regaya and A. Zaafouri., Real-time study of a photovoltaic system with boost converter using the PSO-RBF neural network algorithms in a MyRio controller, Solar Energy, 183,(2019), 1-16. doi:10.1016/j.solener.2019.02.064.
- [28] Zh. Zhao, Weitian . He, Fu. Zhang, C. Wang and Keum-Shik . H., Deterministic Learning from Adaptive Neural Network Control for a 2-DOF Helicopter System With Unknown Backlash and Model Uncertainty, .IEEE Transactions on Industrial Electronics,(2022) , 1- 10.doi:10.1109/TIE.2022.3213916.
- [29] A. Ounissi, M. Landry, A. Kaddouri, R. Abdessmed., PSO Based Parameter Identification of Colman-Hodgdon Model of a Piezoelectric Actuator and PID Feedback Controller, 7, (2014), No. 4, 179-192. doi:10.12988/ces.2014.3953.
- [30] Habib Khan, Q. Khan, L. Khan, W. Alam, Nihad . A, I. Khan, Kottakkaran . So and R. A. Khan .,MPPT Control Paradigms for PMSG-WECS:A synergistic Control Strategy With Gain-Scheduled Sliding Mode Observe, IEEE Access, 9,(2021), 139876-139887, 2021. doi: 10.1109/ACCESS.2021.3119213.
- [31] A. Ounissi, A. Kaddouri, R. Abdessmed., Synergetic control of micro positioning stage piezoelectric actuator, Intenational Journal of applied Power Engineering (IJAPE). 11, (2022), No. 4, 264-270. doi: 10.11591/ijape. v11i4.
- [32] Slotine and W. Li .,Applied nonlinear control, Prentice Hall, Englewood, Cliffs, NJ, 1991.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-610f8917-6930-4a17-a352-c96334b5abea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.