PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reasoning about Exceptions in Ontologies : from the Lexicographic Closure to the Skeptical Closure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reasoning about exceptions in ontologies is nowadays one of the challenges the description logics community is facing. The paper describes a preferential approach for dealing with exceptions in Description Logics, based on the rational closure. The rational closure has the merit of providing a simple and efficient approach for reasoning with exceptions, but it does not allow independent handling of the inheritance of different defeasible properties of concepts. In this work we outline a possible solution to this problem by introducing a weaker variant of the lexicographical closure, that we call skeptical closure, which requires to construct a single base. We develop a bi-preference semantics for defining a characterization of the skeptical closure.
Słowa kluczowe
Wydawca
Rocznik
Strony
235--269
Opis fizyczny
Bibliogr. 60 poz.
Twórcy
  • Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel, 11 - 15121, Alessandria, Italy
  • Center for Logic, Language and Cognition, Dipartimento di Informatica, Università di Torino, Corso Svizzera, 185, 10149 Torino, Italy
Bibliografia
  • [1] Straccia U. Default Inheritance Reasoning in Hybrid KL-ONE-Style Logics. In: Bajcsy R (ed.), Proc. of the 13th Int. Joint Conf. on Artificial Intelligence (IJCAI 1993). Chambéry, France, 1993 pp. 676-681.
  • [2] Baader F, Hollunder B. Priorities on Defaults with Prerequisites, and Their Application in Treating Specificity in Terminological Default Logic. Journal of Automated Reasoning (JAR), 1995. 15(1):41-68. doi:10.1007/BF00881830.
  • [3] Donini FM, Nardi D, Rosati R. Description logics of minimal knowledge and negation as failure. ACM Transactions on Computational Logic (ToCL), 2002. 3(2):177-225. URL https://doi.org/10.1145/505372.505373.
  • [4] Eiter T, Ianni G, Lukasiewicz T, Schindlauer R, Tompits H. Combining answer set programming with description logics for the Semantic Web. Artif. Intell., 2008. 172(12-13):1495-1539. URL https://doi.org/10.1016/j.artint.2008.04.002.
  • [5] Ke P, Sattler U. Next Steps for Description Logics of Minimal Knowledge and Negation as Failure. In: Baader F, Lutz C, Motik B (eds.), Proceedings of Description Logics, volume 353 of CEUR Workshop Proceedings. CEUR-WS.org, Dresden, Germany, 2008.
  • [6] Britz K, Heidema J, Meyer T. Semantic Preferential Subsumption. In: Brewka G, Lang J (eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the 11th International Conference (KR 2008). AAAI Press, Sidney, Australia, 2008 pp. 476-484.
  • [7] Bonatti PA, Lutz C, Wolter F. The Complexity of Circumscription in DLs. Journal of Artificial Intelligence Research (JAIR), 2009. 35:717-773. doi:10.1613/jair.2763.
  • [8] Giordano L, Gliozzi V, Olivetti N, Pozzato GL. ALC+T: a Preferential Extension of Description Logics. Fundamenta Informaticae, 2009. 96:1-32. doi:10.3233/FI-2009-185.
  • [9] Casini G, Straccia U. Rational Closure for Defeasible Description Logics. In: Proc. 12th European Conf. on Logics in AI (JELIA 2010), volume 6341 of LNAI. Springer, Helsinki, Finland, 2010 pp. 77-90. doi:10.1007/978-3-642-15675-5_9.
  • [10] Motik B, Rosati R. Reconciling Description Logics and rules. Journal of the ACM, 2010. 57(5). URL https://doi.org/10.1145/1754399.1754403.
  • [11] Eiter T, Ianni G, Lukasiewicz T, Schindlauer R. Well-founded semantics for description logic programs in the semantic web. ACM Trans. Comput. Log., 2011. 12(2):11. URL https://doi.org/10.1145/1877714.1877717.
  • [12] Bonatti PA, Faella M, Sauro L. Defeasible Inclusions in Low-Complexity DLs. J. Artif. Intell. Res. (JAIR), 2011. 42:719-764. URL https://doi.org/10.1613/jair.3360.
  • [13] Knorr M, Hitzler P, Maier F. Reconciling OWL and non-monotonic rules for the semantic web. In: ECAI 2012. 2012 p. 474-479. doi:10.3233/978-1-61499-098-7-474.
  • [14] Casini G, Straccia U. Defeasible inheritance-based description logics. Journal of Artificial Intelligence Research (JAIR), 2013. 48:415-473. URL https://doi.org/10.1613/jair.4062.
  • [15] Casini G, Meyer T, Varzinczak IJ, Moodley K. Nonmonotonic Reasoning in Description Logics: Rational Closure for the ABox. In: DL 2013, 26th International Workshop on Description Logics, volume 1014 of CEUR Workshop Proceedings. CEUR-WS.org, 2013 pp. 600-615. URL http://hdl.handle.net/10204/7035.
  • [16] Giordano L, Gliozzi V, Olivetti N, Pozzato GL. A NonMonotonic Description Logic for Reasoning About Typicality. Artificial Intelligence, 2013. 195:165-202. URL https://doi.org/10.1016/j.artint.2012.10.004.
  • [17] Giordano L, Gliozzi V, Olivetti N, Pozzato GL. Semantic characterization of rational closure: From propositional logic to description logics. Artificial Intelligence, 2015. 226:1-33. URL https://doi.org/10.1016/j.artint.2015.05.001.
  • [18] Gottlob G, Hernich A, Kupke C, Lukasiewicz T. Stable Model Semantics for Guarded Existential Rules and Description Logics. In: Proc. KR 2014. 2014 pp. 258-267. URL http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/8011.
  • [19] Bonatti PA, Faella M, Petrova I, Sauro L. A new semantics for overriding in description logics. Artif. Intell., 2015. 222:1-48. URL https://doi.org/10.1016/j.artint.2014.12.010.
  • [20] Bozzato L, Eiter T, Serafini L. Enhancing context knowledge repositories with justifiable exceptions. Artif. Intell., 2018. 257:72-126. URL https://doi.org/10.1016/j.artint.2017.12.005.
  • [21] Giordano L, Gliozzi V, Olivetti N, Pozzato G. Minimal Model Semantics and Rational Closure in Description Logics. In: 26th International Workshop on Description Logics (DL 2013), volume 1014. 2013 pp. 168-180.
  • [22] Casini G, Meyer T, Moodley K, Sattler U, Varzinczak I. Introducing Defeasibility into OWL Ontologies. In: Proc. 14th Int. Semantic Web Conf., ISWC 2015, Bethlehem, USA, Oct. 11-15, 2015 pp. 409-426. doi:10.1007/978-3-319-25010-6_27.
  • [23] Giordano L, Gliozzi V. Encoding a Preferential Extension of the Description Logic SROIQ into SROIQ. In: Proc. ISMIS 2015, volume 9384 of LNCS. Springer, 2015 pp. 248-258. doi:10.1007/978-3-319-25252-0_27.
  • [24] Moodley K. Practical Reasoning for Defeasible Description Logics. PhD Thesis, University of Kwazulu-Natal, 2016.
  • [25] Giordano L, Gliozzi V, Olivetti N. Towards a Rational Closure for Expressive Description Logics: the Case of SHIQ. Fundam. Inform., 2018. 159(1-2):95-122. doi:10.3233/FI-2018-1659.
  • [26] Britz K, Casini G, Meyer T, Moodley K, Sattler U, Varzinczak I. Theoretical Foundations of Defeasible Description Logics. CoRR, 2019. abs/1904.07559. URL http://arxiv.org/abs/1904.07559.
  • [27] Patel-Schneider P, Hayes P, Horrocks I. OWL Web Ontology Language; Semantics and Abstract Syntax. In: http: //www.w3.org/TR/owl-semantics/. 2002.
  • [28] Pearl J. System Z: A Natural Ordering of Defaults with Tractable Applications to Nonmonotonic Reasoning. In: Parikh R (ed.), TARK (3rd Conference on Theoretical Aspects of Reasoning about Knowledge). Morgan Kaufmann, Pacific Grove, CA, USA. 1990 pp. 121-135. ISBN:1-55860-105-8.
  • [29] Benferhat S, Dubois D, Prade H. Possibilistic Logic: From nonmonotonicity to Logic Programming. In: Symbolic and Quantitative Approaches to Reasoning and Uncertainty, European Conference, ECSQARU’93, Granada, Spain, November 8-10, 1993, Proceedings. 1993 pp. 17-24. doi:10.1007/BFb0028177.
  • [30] Lehmann DJ. Another Perspective on Default Reasoning. Ann. Math. Artif. Intell., 1995. 15(1):61-82. doi:10.1007/BF01535841.
  • [31] Casini G, Straccia U. Lexicographic Closure for Defeasible Description Logics. In: Proc. of Australasian Ontology Workshop, vol.969. 2012 pp. 28-39.
  • [32] Casini G, Meyer T, Moodley K, Nortje R. Relevant Closure: A New Form of Defeasible Reasoning for Description Logics. In: JELIA 2014, LNCS 8761. Springer, 2014 pp. 92-106. doi:10.1007/978-3-319-11558-0_7.
  • [33] Bonatti PA, Sauro L. On the logical properties of the nonmonotonic description logic DLN. Artif. Intell., 2017. 248:85-111.
  • [34] Gliozzi V. Reasoning about Multiple Aspects in Rational Closure for DLs. In: Proc. XVth Int. Conf. of the Italian Assoc. for Artificial Intelligence, AI*IA 2016, Genova, Italy, Nov. 29 - Dec. 1, 2016 pp. 392-405. doi:10.1007/978-3-319-49130-1_29.
  • [35] Gil OF. On the Non-Monotonic Description Logic ALC+Tmin. CoRR, 2014. arXiv: abs/1404.6566.
  • [36] Giordano L, Gliozzi V, Olivetti N, Pozzato GL. Preferential Description Logics. In: Proc. LPAR 2007, volume 4790 of LNAI. Springer-Verlag, Yerevan, Armenia, 2007 pp. 257-272. doi:10.1007/978-3-540-75560-9_20.
  • [37] Kraus S, Lehmann D, Magidor M. Nonmonotonic Reasoning, Preferential Models and Cumulative Logics. Artificial Intelligence, 1990. 44(1-2):167-207. URL https://doi.org/10.1016/0004-3702(90)90101-5.
  • [38] Lehmann D, Magidor M. What does a conditional knowledge base entail? Artificial Intelligence, 1992. 55(1):1-60. URL https://doi.org/10.1016/0004-3702(92)90041-U.
  • [39] Giordano L, Gliozzi V. Reasoning about multiple aspects in DLs: Semantics and Closure Construction. CoRR, 2018. abs/1801.07161. URL http://arxiv.org/abs/1801.07161.
  • [40] Giordano L, Gliozzi V. Reasoning about exceptions in ontologies: an approximation of the multipreference semantics. In: Proc. ECSQARU 2019, Belgrade, September 18-20, 2019, pp. 212-225. doi:10.1007/978-3-030-29765-7_18.
  • [41] Giordano L. Reasoning about exceptions in ontologies: a skeptical preferential approach (extended abstract). In: Joint Proc. of the 18th Italian Conf. on Theoretical Computer Science and 32nd Italian Conf. on Computational Logic, Naples, September 26-28, 2017, volume 1949 of CEUR Workshop Proc. pp. 6-10.
  • [42] Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider P. The Description Logic Handbook - Theory, Implementation, and Applications, 2nd edition. Cambridge, 2007. URL https://doi.org/10.1017/CBO9780511711787.
  • [43] Giordano L, Gliozzi V, Olivetti N, Pozzato G. A tableaux calculus for ALC + TminR. TR, University of Torino, 2013. URL http://www.di.unito.it/~pozzato/papers/tralctrm.pdf.
  • [44] Giordano L, Gliozzi V. A reconstruction of the multipreference closure. CoRR, 2019. abs/1905.03855. URL http://arxiv.org/abs/1905.03855.
  • [45] Giordano L, Dupré DT. Defeasible Reasoning in SROEL: from Rational Entailment to Rational Closure. Fundam. Inform., 2018. 161(1-2):135-161. doi:10.3233/FI-2018-1698.
  • [46] Casini G, Straccia U. Defeasible Inheritance-Based Description Logics. In: Walsh T (ed.), Proc. 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI 2011). Morgan Kaufmann, Barcelona, 2011 pp. 813-818.
  • [47] Britz K, Varzinczak IJ. Rationality and Context in Defeasible Subsumption. In: Proc. 10th Int. Symp. On Found. of Information and Knowledge Systems, FoIKS 2018, Budapest, May 14-18, 2018 pp. 114-132. doi:10.1007/978-3-319-90050-6_7.
  • [48] Britz A, Varzinczak I. Contextual Rational Closure for Defeasible ALC (Extended Abstract). In: Proc. 32nd International Workshop on Description Logics, Oslo, Norway, June 18-21, 2019.
  • [49] Giordano L, Gliozzi V. Reasoning about multiple aspects in DLs: Semantics and Closure Construction. CoRR, 2018. abs/1801.07161. URL http://arxiv.org/abs/1801.07161.
  • [50] Casini G, Straccia U. Towards Rational Closure for Fuzzy Logic: The Case of Propositional Gödel Logic. In: Proc. 19th Int. Conf., LPAR-19, Stellenbosch, South Africa, December 14-19, 2013 pp. 213-227. doi:10.1007/978-3-642-45221-5_16.
  • [51] Lukasiewicz T. Expressive probabilistic description logics. Artif. Intell., 2008. 172:852-883. URL https://doi.org/10.1016/j.artint.2007.10.017.
  • [52] Wilhelm M, Kern-Isberner G. Maximum Entropy Calculations for the Probabilistic Description Logic ALCME. In: Description Logic, Theory Combination, and All That, LNAI 11560, 2019 pp. 588-609. doi:10.1007/978-3-030-22102-7_28.
  • [53] Benferhat S, Dubois D, Prade H. Nonmonotonic Reasoning, Conditional Objects and Possibility Theory. Artificial Intelligence, 1997. 92(1-2):259-276. URL https://doi.org/10.1016/S0004-3702(97)00012-X.
  • [54] Adams E. The logic of conditionals. D. Reidel, Dordrecht, 1975. doi:10.1007/978-94-015-7622-2.
  • [55] Benferhat S, Dubois D, Prade H. Representing Default Rules in Possibilistic Logic. In: Proc. 3rd Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’92). Cambridge, MA. 1992 pp. 673-684.
  • [56] Kern-Isberner G. Conditionals in Nonmonotonic Reasoning and Belief Revision - Considering Conditionals as Agents, volume 2087 of LNCS. Springer, 2001. ISBN:3-540-42367-2.
  • [57] Pensel M, Turhan A. Including Quantification in Defeasible Reasoning for the Description Logic EL ┴. In: Proc. LPNMR 2017 - 14th Int. Conf., Espoo, Finland, July 3-6, 2017 pp. 78-84. doi:10.1007/978-3-319-61660-5_9.
  • [58] Pensel M, Turhan A. Reasoning in the Defeasible Description Logic EL - computing standard inferences under rational and relevant semantics. Int. J. Approx. Reasoning, 2018. 103:28-70. doi:10.1016/j.ijar.2018.08.005.
  • [59] Casini G, Straccia U, Meyer T. A Polynomial Time Subsumption Algorithm for Nominal Safe ELO ┴ under Rational Closure. CoRR, 2018. abs/1802.08201. doi:10.1016/j.ins.2018.09.037.
  • [60] Bonatti PA. Rational closure for all Description Logics. Artif. Intell., 2019. 274:197-223. URL https://doi.org/10.1016/j.artint.2019.04.001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-610d88b9-c149-4827-9ce6-0ad530ba4a82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.