PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multicriteria optimization of medical institutions’ schedules on the basis of neuro fuzzy models and evolutionary algorithms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Taking into account the expansion of infrastructure and the growth of hospitals, as well as the increase in the influx of patients, the manual preparation of therapies, in particular, regenerative therapy, becomes ineffective and causes frequent dissatisfaction and complaining of patients. Taking into account the large number of factors forming the schedule, the task of multicriteria optimization is presented in accordance with strict restrictions and immediate wishes of patients. This task can be decomposed into several subtasks that require development of: a reference schedule that would satisfy the strict restrictions imposed by the domain; a method for evaluating the reference schedule and intermediate schedules; the method of optimization of the reference scheduling in order to improve the estimated results. In the course of solving these problems it is necessary: to carry out the construction of relevant criteria for evaluating the quality of the decomposition and turn their qualitative values into quantitative forms; carry out the transition from multi-criteria optimization to one-criterion by minimizing the set of evaluation criteria in the scalar value that can be used in the process of optimization; to avoid local optimum and reach the global optimal solution. The article is devised a method of multicriteria assessment and optimization of medical institutions’ schedules, based on the use of automatic theory to construct the reference scheduling of the functioning of the clinic, the application of methods and means of fuzzy logic and evolutionary algorithms. Using an automated system of construction, multicriteria assessment and optimization of schedules of medical institutions can reduce the amount of manual work, as well as increase the level of satisfaction of patients with the quality of regenerative therapy.
Twórcy
autor
  • Lviv Polytechnic National University
  • Lviv Polytechnic National University
Bibliografia
  • 1. Epifanov V. A., Epifanov A. V., 2014. Rehabilitation in neurology. GEOTAR Media, 416.
  • 2. Al-Abri R., Al-Balushi A., Patient Satisfaction Survey as a Tool Towards Quality Improvement. Oman Med J. 2014 Jan; 29(1): 3–7.
  • 3. Burdyuk V. Y., Shkurba V. V., 1971. Theory of schedules. Objectives and methods of solutions. Cybernetics, 1 , 89-102.
  • 4. Gafarov E. R., Lazarev A. A., 2006. Proof of NP-hardness particular case of the problem of minimizing the total delay for one device. Izvestiya AN: Theory and management systems, 3, 120-128.
  • 5. Gary M. Johnson D., 1982. Computers and Intractability. Mir, 416 p.
  • 6. Lazarev A. A., Kvaratskhelia A. G., Gafarov E. R., 2007. Algorithms for solving NP-hard problems of minimization of summarized delay for one device. Reports of the Academy of Sciences 412(6), 739-742.
  • 7. Coffman E. G., 1984. The theory of schedules and computers, 335.
  • 8. Tsmots I., Medykovskyy M., Skorokhoda A., Teslyuk T., 2016. Design of intelligent component of hierarchical control system. ECONTECHMOD. AN INTERNATIONAL QUARTERLY 5(2), 3-10.
  • 9. Kordiyak D., Shakhovska N., 2016. Analytical review of medical mobile diagnostic systems, ECONTECHMOD. AN INTERNATIONAL QUARTERLY 5(2), 11-16.
  • 10. Melnykova N., Marikutsa U., 2016. Specifics personalized approach in the analysis of medical information. ECONTECHMOD. AN INTERNATIONAL QUARTERLY 5(1), 113-120.
  • 11. Sidorin A. B., 2009. Automation methods of scheduling sessions Part 2: Heuristic optimization methods. News VSTU 12 (60), 120-123.
  • 12. Shkurba V. V., Podchasova T.P., Pshichuk A.N. Tur L.P., 1966. Tasks of scheduling and methods of their solution, Naukova Dumka, 154.
  • 13. Brouwer V., 1987. Introduction to the theory of finite automata,. Brouwer, Radio and Communications, 392.
  • 14. Gill A., 1966. Introduction to the theory of finite automata. Nauka, 272.
  • 15. Korotkova M. A., 2008. The mathematical theory of automata: a manual for schools, 116.
  • 16. Karpov Y. G., 2002. Automata Theory: Textbook for Universities, 224.
  • 17. Melikhov A. N., 1971. Directed graphs and finite state machines, 416.
  • 18. Hopcroft J., Motvani R. Ullman G. , 2002. Introduction to Automata Theory, Languages and Computing, 527.
  • 19. Baptiste Ph., Le Pape C., Nuijten W., 2001. Constraint-based scheduling: applying constraint programming to scheduling problems, Academic Publishers,198.
  • 20. Brooks G. N., White C. R., 1965. An algorithm for finding optimal or near – optimal solutions to the production scheduling problem 16(1), 34–40.
  • 21. Caroll J., Long D., 1989. Theory of Finite Automata, New Jersey: Prentice Hall, 145.
  • 22. Rinnooy Kan A. H. G., Lageweg B. J., Lenstra J. K., 1975. Minimizing total cost in one machine scheduling. Operations Research, 23, 908–927.
  • 23. Thompson J., Dowsland K., 1996. Variants of simulated annealing for the examination timetabling problem. Annals of Operational Research, 63, 195.
  • 24. Alves, F. S. R., Guimaraes, K. F., Fernandes M.A. Modeling workflow systems with genetic planner and scheduler. 18th IEEE International Conference on Tools with Artificial Intelligence, 381-388.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-610bfc91-b11c-4ec7-bcc7-039d9c561b0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.