PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study of the Inverse Gaussian Process with hazard rate functions-based drifts applied to degradation modelling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The stochastic modelling of degradation processes requires different characteristics to be considered, such that it is possible to capture all the possible information about a phenomenon under study. An important characteristic is what is known as the drift in some stochastic processes; specifically, the drift allows to obtain information about the growth degradation rate of the characteristic of interest. In some phenomenon’s the growth rate cannot be considered as a constant parameter, which means that the rate may vary from trajectory to trajectory. Given this, it is important to study alternative strategies that allow to model this variation in the drift. In this paper, several hazard rate functions are integrated in the inverse Gaussian process to describe its drift in the aims of individually characterize degradation trajectories. The proposed modelling scheme is illustrated in two case studies, from which the best fitting model is selected via information criteria, a discussion of the flexibility of the proposed models is provided according to the obtained results.
Rocznik
Strony
590--602
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Autonomous University of Ciudad Juárez, Department Industrial Engineering and Manufacturing, Av. Plutarco Elías Calles 1210, Fovissste Chamizal, 32310 Ciudad Juárez, Chihuahua, México
  • Autonomous University of Ciudad Juárez, Department Industrial Engineering and Manufacturing, Av. Plutarco Elías Calles 1210, Fovissste Chamizal, 32310 Ciudad Juárez, Chihuahua, México
  • Autonomous University of Ciudad Juárez, Department Industrial Engineering and Manufacturing, Av. Plutarco Elías Calles 1210, Fovissste Chamizal, 32310 Ciudad Juárez, Chihuahua, México
  • Autonomous University of Ciudad Juárez, Department of Electrical and Computer Engineering, Av. Plutarco Elías Calles 1210, Fovissste Chamizal, 32310 Ciudad Juárez, Chihuahua, México
Bibliografia
  • 1. Ahmad A E B A, Ghazal M G M. Exponentiated additive Weibull distribution. Reliability Engineering & System Safety 2020; 193: 106663, https://doi.org/10.1016/J.RESS.2019.106663.
  • 2. Ahsan S, Lemma T A, Gebremariam M A. Reliability analysis of gas turbine engine by means of bathtub-shaped failure rate distribution. Process Safety Progress 2020; 39(S1): e12115, https://doi.org/10.1002/PRS.12115.
  • 3. Ali S, Ali S, Shah I, Khajavi A N. Reliability Analysis for Electronic Devices Using Beta Generalized Weibull Distribution. Iranian Journal of Science and Technology, Transactions A: Science 2019 43:5 2019; 43(5): 2501–2514, https://doi.org/10.1007/S40995-019-00730-4.
  • 4. Andrzejczak K, Selech J. Generalised gamma distribution in the corrective maintenance prediction of homogeneous vehicles. Lecture Notes in Networks and Systems 2019; 68: 519–529, https://doi.org/10.1007/978-3-030-12450-2_50/COVER/.
  • 5. Chen N, Ye Z S, Xiang Y, Zhang L. Condition-based maintenance using the inverse Gaussian degradation model. European Journal of Operational Research 2015; 243(1): 190–199, https://doi.org/10.1016/J.EJOR.2014.11.029.
  • 6. Chen Z. A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Statistics & Probability Letters 2000; 49(2): 155–161, https://doi.org/10.1016/S0167-7152(00)00044-4.
  • 7. Chiodo E, Mazzanti G. The Decreasing Hazard Rate Phenomenon: A Review of Different Models, with a Discussion of the Rationale behind Their Choice. Electronics 2021, Vol. 10, Page 2553 2021; 10(20): 2553, https://doi.org/10.3390/ELECTRONICS10202553.
  • 8. Dimitrakopoulou T, Adamidis K, Loukas S. A lifetime distribution with an upside-down bathtub-shaped hazard function. IEEE Transactions on Reliability 2007; 56(2): 308–311, https://doi.org/10.1109/TR.2007.895304.
  • 9. Hjorth U. A Reliability Distribution with Increasing, Decreasing, Constant and Bathtub-Shaped Failure Rates. Technometrics 1980; 22(1): 99, https://doi.org/10.2307/1268388.
  • 10. Kayid M. Some new results on bathtub-shaped hazard rate models. Mathematical Biosciences and Engineering 2022 2:1239 2022; 19(2): 1239–1250, https://doi.org/10.3934/MBE.2022057.
  • 11. Lai C D, Xie M, Murthy D N P. A modified Weibull distribution. IEEE Transactions on Reliability 2003; 52(1): 33–37, https://doi.org/10.1109/TR.2002.805788.
  • 12. Lawless J, Crowder M. Covariates and Random Effects in a Gamma Process Model with Application to Degradation and Failure. Lifetime Data Analysis 2004; 10(3): 213–227, https://doi.org/10.1023/B:LIDA.0000036389.14073.dd.
  • 13. Lee C, Famoye F, Olumolade O. Beta-Weibull Distribution: Some Properties and Applications to Censored Data. Journal of Modern Applied Statistical Methods 2007; 6(1): 17, https://doi.org/10.22237/jmasm/1177992960.
  • 14. Li C, Hao H. Degradation Data Analysis Using Wiener Process and MCMC Approach. Engineering Letters 2017; 25(3): 234–238.
  • 15. Liu D, Wang S, Tomovic M M. Degradation modeling method for rotary lip seal based on failure mechanism analysis and stochastic process/ Eksploatacja i Niezawodnosc – Maintenance and Reliability 2020; 22(3): 381–390, https://doi.org/10.17531/EIN.2020.3.1.
  • 16. Luengo D, Martino L, Bugallo M et al. A survey of Monte Carlo methods for parameter estimation. EURASIP Journal on Advances in Signal Processing 2020 2020:1 2020; 2020(1): 1–62, https://doi.org/10.1186/S13634-020-00675-6.
  • 17. Mudholkar G S, Srivastava D K. Exponentiated Weibull Family for Analyzing Bathtub Failure-Rate Data. IEEE Transactions on Reliability 1993; 42(2): 299–302, https://doi.org/10.1109/24.229504.
  • 18. Peng C Y. Inverse Gaussian Processes With Random Effects and Explanatory Variables for Degradation Data. Technometrics 2015; 57(1): 100–111, https://doi.org/10.1080/00401706.2013.879077.
  • 19. Peng W, Li Y F, Yang Y J et al. Inverse Gaussian process models for degradation analysis: A Bayesian perspective. Reliability Engineering & System Safety 2014; 130: 175–189, https://doi.org/10.1016/J.RESS.2014.06.005.
  • 20. Peng W, Li Y F, Yang Y J et al. Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates. IEEE Transactions on Reliability 2017; 66(1): 84–96, https://doi.org/10.1109/TR.2016.2635149.
  • 21. Pourhassan M R, Raissi S, Hafezalkotob A. A simulation approach on reliability assessment of complex system subject to stochastic degradation and random shock. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2020; 22(2): 370–379, https://doi.org/10.17531/EIN.2020.2.20.
  • 22. Quezada Del Villar A V, Rodríguez-Picón L A, Pérez-Olguín I J C, Méndez-González L C. Stochastic modelling of the temperature increase in metal stampings with multiple stress variables and random effects for reliability assessment. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2019; 21(4): 654–661, https://doi.org/10.17531/EIN.2019.4.15.
  • 23. Rodríguez-Picón L A. Reliability assessment for systems with two performance characteristics based on gamma processes with marginal heterogeneous random effects. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2017. doi:10.17531/ein.2017.1.2, https://doi.org/10.17531/ein.2017.1.2.
  • 24. Rodríguez-Picón L A, Rodríguez-Picón A P, Méndez-González L C et al. Degradation modeling based on gamma process models with random effects. Communications in Statistics: Simulation and Computation 2017. doi:10.1080/03610918.2017.1324981, https://doi.org/10.1080/03610918.2017.1324981.
  • 25. Romaniuk M. Optimization of maintenance costs of a pipeline for a V-shaped hazard rate of malfunction intensities. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 20(1): 46–56, https://doi.org/10.17531/ein.2018.1.7.
  • 26. Romaniuk M, Hryniewicz O. Estimation of maintenance costs of a pipeline for a u-shaped hazard rate function in the imprecise setting. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2020; 22(2): 352–362, https://doi.org/10.17531/EIN.2020.2.18.
  • 27. SchÄbe H. Constructing lifetime distributions with bathtub shaped failure rate from DFR distributions. Microelectronics Reliability 1994; 34(9): 1501–1508, https://doi.org/10.1016/0026-2714(94)90458-8.
  • 28. Si X S, Wang W, Hu C H et al. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation. Mechanical Systems and Signal Processing 2013; 35(1–2): 219–237, https://doi.org/10.1016/j.ymssp.2012.08.016.
  • 29. Tang S, Guo X, Yu C et al. Accelerated degradation tests modeling based on the nonlinear wiener process with random effects. Mathematical Problems in Engineering 2014. doi:10.1155/2014/560726, https://doi.org/10.1155/2014/560726.
  • 30. Tsai C-C, Tseng S-T, Balakrishnan N. Optimal Design for Degradation Tests Based on Gamma Processes With Random Effects. IEEE Transactions on Reliability 2012; 61(2): 604–613, https://doi.org/10.1109/TR.2012.2194351.
  • 31. Wang H, Xu T, Mi Q. Lifetime prediction based on Gamma processes from accelerated degradation data. Chinese Journal of Aeronautics 2015; 28(1): 172–179, https://doi.org/10.1016/j.cja.2014.12.015.
  • 32. Wang X. A pseudo-likelihood estimation method for nonhomogeneous gamma process model with random effects. Statistica Sinica 2008; 18: 1153–1163, https://doi.org/10.2307/24308535.
  • 33. Wang X. Wiener processes with random effects for degradation data. Journal of Multivariate Analysis 2010; 101(2): 340–351, https://doi.org/10.1016/J.JMVA.2008.12.007.
  • 34. Wang X, Xu D. An Inverse Gaussian Process Model for Degradation Data. Technometrics 2012; 52(2): 188–197, https://doi.org/10.1198/TECH.2009.08197.
  • 35. Wu W F, Ni C C. A study of stochastic fatigue crack growth modeling through experimental data. Probabilistic Engineering Mechanics 2003; 18(2): 107–118, https://doi.org/10.1016/S0266-8920(02)00053-X.
  • 36. Xie M, Lai C D. Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliability Engineering & System Safety 1996; 52(1): 87–93, https://doi.org/10.1016/0951-8320(95)00149-2.
  • 37. Xie M, Tang Y, Goh T N. A modified Weibull extension with bathtub-shaped failure rate function. Reliability Engineering & System Safety 2002; 76(3): 279–285, https://doi.org/10.1016/S0951-8320(02)00022-4.
  • 38. Ye Z S, Chen N. The Inverse Gaussian Process as a Degradation Model. Technometrics 2014; 56(3): 302–311, https://doi.org/10.1080/00401706.2013.830074.
  • 39. Zhang Z, Si X, Hu C, Lei Y. Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods. European Journal of Operational Research 2018; 271(3): 775–796, https://doi.org/10.1016/J.EJOR.2018.02.033.
  • 40. Zimmer W J, Keats J B, Wang F K. The Burr XII Distribution in Reliability Analysis. Journal of Quality Technology 2018; 30(4): 386–394, https://doi.org/10.1080/00224065.1998.11979874.
  • 41. Zio E. Some challenges and opportunities in reliability engineering. IEEE Transactions on Reliability 2016; 65(4): 1769–1782, https://doi.org/10.1109/TR.2016.2591504.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6109cdc0-c5cb-4f3b-91bf-6e8939f18056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.