PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Frames and factorization of graph Laplacians

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using functions from electrical networks (graphs with resistors assigned to edges), we prove existence (with explicit formulas) of a canonical Parseval frame in the energy Hilbert space [formula] of a prescribed infinite (or finite) network. Outside degenerate cases, our Parseval frame is not an orthonormal basis. We apply our frame to prove a number of explicit results: With our Parseval frame and related closable operators in [formula] we characterize the Priedrichs extension of the [formula]-graph Laplacian. We consider infinite connected network-graphs G = (V, E), V for vertices, and E for edges. To every conductance function c on the edges E of G, there is an associated pair [formula] where [formula] in an energy Hilbert space, and Δ (=Δc) is the c-graph Laplacian; both depending on the choice of conductance function c. When a conductance function is given, there is a current-induced orientation on the set of edges and an associated natural Parseval frame in [formula] consisting of dipoles. Now Δ is a well-defined semibounded Hermitian operator in both of the Hilbert [formula] and [formula]. It is known to automatically be essentially selfadjoint as an [formula]-operator, but generally not as an [formula] operator. Hence as an [formula] operator it has a Friedrichs extension. In this paper we offer two results for the Priedrichs extension: a characterization and a factorization. The latter is via [formula].
Rocznik
Strony
293--332
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
  • The University of Iowa Department of Mathematics Iowa City, IA 52242-1419, USA
autor
  • Wright State University Department of Mathematics Dayton, OH 45435, USA
Bibliografia
  • [1] N.I. Akhiezer, I.M. Glazman, Theory of Linear Operators in Hilbert Space, Dover Pub­lications Inc., New York, 1993. Translated from the Russian and with a preface by Merlynd Nestell, Reprint of the 1961 and 1963 translations, Two volumes bound as one.
  • [2] D. Alpay, P. Jorgensen, R. Seager, D. Volok, On discrete analytic functions: products, rational functions and reproducing kernels, J. Appl. Math. Comput. 41 (2013) 1-2, 393-426.
  • [3] V. Anandam, Harmonic functions and potentials on finite or infinite networks, vol. 12 of Lecture Notes of the Unione Matematica Italiana, Springer, Heidelberg; UMI, Bologna, 2011.
  • [4] M.T. Barlow, Random walks, electrical resistance, and nested fractals, [in:] Asymp­totic problems in probability theory: stochastic models and diffusions on fractals (Sanda/Kyoto, 1990), Longman Sci. Tech., Harlow, vol. 283 of Pitman Res. Notes Math. Ser., 131-157, 1993.
  • [5] I. Cho, P.E.T. Jorgensen, Free probability on operator algebras induced by currents in electric resistance networks, Int. J. Funct. Anal. Oper. Theory Appl. 4 (2012) 1, 1-50.
  • [6] I. Cho, P.E.T. Jorgensen, Operators induced by graphs, Lett. Math. Phys. 102 (2012) 3, 323-369.
  • [7] H. Cossette, D. Landriault, E. Marceau, Ruin probabilities in the compound Markov binomial model, Scand. Actuar. J. 4 (2003), 301-323.
  • [8] B. Currey, A. Mayeli, The orthonormal dilation property for abstract Parseval wavelet frames, Canad. Math. Bull. 56 (2013) 4, 729-736.
  • [9] P.G. Doyle, J.L. Snell, Random walks and electric networks, vol. 22 of Carus Mathe­matical Monographs, Mathematical Association of America, Washington, DC, 1984.
  • [10] N. Dunford, J.T. Schwartz, Linear Operators. Part II, Wiley Classics Library, John Wiley & Sons Inc., New York, 1988. Spectral theory. Selfadjoint operators in Hilbert space, with the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1963 original, A Wiley-Interscience Publication.
  • [11] M. Durand, Architecture of optimal transport networks, Phys. Rev. E (3), 73 (2006) 1, 016116, 6.
  • [12] M. Ehler, K. A. Okoudjou, Probabilistic Frames: an Overview, [in:] Finite Frames, Birkhauser/Springer, New York, Appl. Numer. Harmon. Anal, 415-436, 2013.
  • [13] M. Folz, Volume growth and spectrum for general graph Laplacians, Math. Z. 276 (2014) 1-2, 115-131.
  • [14] M.J. Gander, S. Loisel, D.B. Szyld, An optimal block iterative method and preconditioner for banded matrices with applications to PDEs on irregular domains, SIAM J. Matrix Anal. Appl. 33 (2012) 2, 653-680.
  • [15] G. Grimmett, Probability on Graphs, vol. 1 of Institute of Mathematical Statistics Text­books, Cambridge University Press, Cambridge, 2010.
  • [16] D. Han, W. Jing, D. Larson, P. Li, R.N. Mohapatra, Dilation of dual frame pairs in Hilbert C*-modules, Results Math. 63 (2013) 1-2, 241-250.
  • [17] P.E.T. Jorgensen, Essential self-adjointness of the graph-Laplacian, J. Math. Phys. 49 (2008) 7, 073510, 33.
  • [18] P.E.T. Jorgensen, A.M. Paolucci, q-frames and Bessel functions, Numer. Funct. Anal. Optim. 33 (2012) 7-9, 1063-1069.
  • [19] P.E.T. Jorgensen, E.P.J. Pearse, A Hilbert space approach to effective resistance metric, Complex Anal. Oper. Theory 4 (2010) 4, 975-1013.
  • [20] P.E.T. Jorgensen, E.P.J. Pearse, Resistance Boundaries of Infinite Networks, [in:] Ran­dom Walks, Boundaries and Spectra, Birkhauser/Springer Basel AG, Basel, vol. 64 ol Progr. Probab., 111-142, 2011.
  • [21] P.E.T. Jorgensen, E.P.J. Pearse, Spectral reciprocity and matrix representations of un­bounded operators, J. Funct. Anal. 261 (2011) 3, 749-776.
  • [22] P.E.T. Jorgensen, E.P.J. Pearse, A discrete Gauss-Green identity for unbounded Laplace operators, and the transience of random walks, Israel J. Math. 196 (2013) 1, 113-160.
  • [23] P.E.T. Jorgensen, M.-S. Song, Comparison of Discrete and Continuous Wavelet Trans­forms, [in:] Computational Complexity. Vols. 1-6, Springer, New York, 513-526, 2012.
  • [24] V. Kaltal, D.R. Larson, S. Zhang, Operator-valued frames, Trans. Amer. Math. Soc. 361 (2009) 12, 6349-6385.
  • [25] G. Kutyniok, K.A. Okoudjou, F. Philipp, E.K. Tuley, Scalable frames, Linear Algebra Appl. 438 (2013) 5, 2225-2238.
  • [26] I.M. Longini, Jr., A chain binomial model of endemicity, Math. Biosci. 50 (1980) 1-2, 85-93.
  • [27] M. Longla, C. Peligrad, M. Peligrad, On the functional central limit theorem for re­versible Markov chains with nonlinear growth of the variance, J. Appl. Probab. 49 (2012) 4, 1091-1105.
  • [28] F.G. Meyer, X. Shen, Perturbation of the eigenvectors of the graph Laplacian: applica­tion to image denoising, Appl. Comput. Harmon. Anal. 36 (2014) 2, 326-334.
  • [29] C.S. J.A. Nash-Williams, Random walk and electric currents in networks, Proc. Cam­bridge Philos. Soc. 55 (1959), 181-194.
  • [30] F.A. Shah, L. Debnath, Tight wavelet frames on local fields, Analysis (Berlin) 33 (2013) 3, 293-307.
  • [31] M.N.S. Swamy, K. Thulasiraman, Graphs, Networks, and Algorithms, John Wiley & Sons, Inc., New York, 1981.
  • [32] R. Terakado, Construction of constant resistance networks using the properties of two-dimensional regions with antisymmetry, IEEE Trans. Circuits and Systems CAS-25 (1978) 2, 109-111.
  • [33] P. Tetali, Random walks and the effective resistance of networks, J. Theoret. Probab. 4 (1991) 1, 101-109.
  • [34] K.-C. Yuen, J. Guo, Some results on the compound Markov binomial model, Scand. Actuar. J. 3 (2006), 129-140.
  • [35] A.H. Zemanian, Random walks on finitely structured transfinite networks, Potential Anal. 5 (1996) 4, 357-382.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6109726e-527c-473d-ab49-1adceac094e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.