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Abstract. Using functions from electrical networks (graphs with resistors assigned to edges),
we prove existence (with explicit formulas) of a canonical Parseval frame in the energy Hilbert
space HE of a prescribed infinite (or finite) network. Outside degenerate cases, our Parseval
frame is not an orthonormal basis. We apply our frame to prove a number of explicit results:
With our Parseval frame and related closable operators in HE we characterize the Friedrichs
extension of the HE-graph Laplacian. We consider infinite connected network-graphs G =
(V,E), V for vertices, and E for edges. To every conductance function c on the edges E of G,
there is an associated pair (HE ,∆) where HE in an energy Hilbert space, and ∆ (= ∆c) is
the c-graph Laplacian; both depending on the choice of conductance function c. When a
conductance function is given, there is a current-induced orientation on the set of edges and
an associated natural Parseval frame in HE consisting of dipoles. Now ∆ is a well-defined
semibounded Hermitian operator in both of the Hilbert l2 (V ) and HE . It is known to
automatically be essentially selfadjoint as an l2 (V )-operator, but generally not as an HE

operator. Hence as an HE operator it has a Friedrichs extension. In this paper we offer
two results for the Friedrichs extension: a characterization and a factorization. The latter is
via l2 (V ).
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1. INTRODUCTION

We study infinite networks with the use of frames in Hilbert space. While our results
apply to finite systems, we will concentrate on the infinite case because of its statistical
significance.
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By a network we mean a graph G with vertices V and edges E. We assume
that each vertex is connected by single edges to a finite number of neighboring ver-
tices, and that resistors are assigned to the edges. From this we define an associated
graph-Laplacian ∆, and a resistance metric on V .

The functions on V of interest represent voltage distributions. While there are
a number of candidates for associated Hilbert spaces of functions on V , the one we
choose here has its norm-square equal to the energy of the voltage function. This
Hilbert space is denoted HE , and it depends on an assigned conductance function
(= reciprocal of resistance). We will further study an associated graph Laplacian as
a Hermitian semibounded operator with dense domain in HE .

In our first result we identify a canonical Parseval frame in HE , and we show that
it is not an orthonormal basis except in simple degenerate cases. The frame vectors
(for HE) are indexed by oriented edges e, a dipole vector for each e, and a current
through e.

We apply our frame to complete a number of explicit results. We study the
Friedrichs extension of the graph Laplacian ∆. And we use our Parseval frame and
related closable operators in HE to give a factorization of the Friedrichs extension
of ∆.

Continuing earlier work [13,17,19–22,28] on analysis and spectral theory of infinite
connected network-graphs G = (V,E), V for vertices, and E for edges, we study here
a new factorization for the associated graph Laplacians. Our starting point is a fixed
conductance function c for G. It is known that, to every prescribed conductance
function c on the edges E of G, there is an associated pair (HE ,∆) where HE in an
energy Hilbert space, and ∆ (= ∆c) is the c-graph Laplacian; both depending on the
choice of conductance function c. For related papers on frames and discrete harmonic
analysis, see also [2, 5, 6, 11,18,23,31,32] and the papers cited there.

It is also known that ∆ is a well-defined semibounded Hermitian operator in both
of the Hilbert l2 (V ) and HE ; densely defined in both cases; and in each case with
a natural domain, see [19]. As an l2 (V )-operator ∆ has an ∞ ×∞ representation
expressed directly in terms of (c,G), and it is further known that ∆ is automatically
be essentially selfadjoint as an l2 (V )-operator, but generally not as an HE operator,
[17,22]. Hence as an HE operator it has a Friedrichs extension. In this paper we offer
two results for the HE Friedrichs extension: a characterization and a factorization.
The latter is via the Hilbert space l2 (V ).

We begin with the basic notions needed, and we then turn to our theorem about
Parseval frames: In Section 3, we show that, when a conductance function is given,
there is a current-induced orientation on the set of edges and an associated natural
Parseval frame in the energy Hilbert space HE with the frame vectors consisting of
dipoles.

2. BASIC SETTING

The graph Laplacian ∆ (Definition 2.2) has an easy representation as a densely defined
semibounded operator in l2 (V ) via its matrix representation, see Remark 2.3. To do



Frames and factorization of graph Laplacians 295

this we use implicitly the standard orthonormal (ONB) basis {δx} in l2(V ). But in
network problems, and in metric geometry, l2(V ) is not useful; rather we need the
energy Hilbert space HE , see Lemma 3.2.

The problem with this is that there is not an independent characterization of
the domain dom (∆,HE) when ∆ is viewed as an operator in HE (as opposed to in
l2(V )); other than what we do in Definition 4.1, i.e., we take for its domain DE =
finite span of dipoles. This creates an ambiguity with functions on V versus vectors
in HE . Note, vectors in HE are equivalence classes of functions on V . In fact we will
see that it is not feasible to aim to prove properties about ∆ in HE without first
introducing dipoles; see Lemma 3.4 below. Also the delta-functions {δx} from the
l2(V )-ONB will typically not be total in HE . In fact, the HE ortho-complement of
{δx} in HE consists of the harmonic functions in HE .

Let V be a countable discrete set, and let E ⊂ V × V be a subset such that:

1. (x, y) ∈ E ⇐⇒ (y, x) ∈ E; x, y ∈ V ;
2. # {y ∈ V | (x, y) ∈ E} is finite, and > 0 for all x ∈ V ;
3. (x, x) /∈ E;
4. there exists o ∈ V such that for all y ∈ V there are x0, x1, . . . , xn ∈ V with x0 = o,
xn = y, (xi−1, xi) ∈ E for all i = 1, . . . , n.

The last property is called connectedness. If a conductance function c is given we
require cxi−1xi

> 0.

Definition 2.1. A function c : E → R+ ∪ {0} is called conductance function if
c (e) ≥ 0, for all e ∈ E, and if for all x ∈ V , and (x, y) ∈ E, cxy > 0, and cxy = cyx.

If x ∈ V , we set

c(x) :=
∑

y

cxy, sum over
{
y ∈ V

∣∣ (x, y) ∈ E
}

:= E(x). (2.1)

The summation in (2.1) is denoted x ∼ y. We say that x ∼ y if (x, y) ∈ E.

Definition 2.2. When c is a conductance function (see Definition 2.1) we set ∆ = ∆c

(the corresponding graph Laplacian)

(∆u) (x) =
∑

y∼x
cxy (u(x)− u(y)) = c(x)u(x)−

∑

y∼x
cxyu(y). (2.2)

Remark 2.3. Given (V,E, c) as above, and let ∆ = ∆c be the corresponding graph
Laplacian. With a suitable ordering on V , we obtain the following banded ∞ ×∞
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matrix-representation for ∆:




c (x1) −cx1x2
0 · · · · · · · · · · · · 0 · · ·

−cx2x1 c (x2) −cx2x3 0 · · · · · · · · ·
... · · ·

0 −cx3x2 c (x3) −cx3x4 0 · · · · · · 0 · · ·
... 0

. . . . . . . . . . . .
...

... · · ·
...

...
. . . . . . . . . . . . 0

... · · ·
... 0 · · · 0 −cxnxn−1 c (xn) −cxnxn+1 0 · · ·
...

... · · · · · · 0
. . . . . . . . . . . .




(2.3)
(We refer to [14] for a number of applications of infinite banded matrices.)

If #E(x) = 2 for all x ∈ V , where E(x) := {y ∈ V | (x, y) ∈ E}, we say that the
corresponding (V,E, c) is nearest neighbor, and in this case, the matrix representation
takes the following form relative the an ordering in V :

o ``
cox1

<<x1 cc
cx1x2

;; x2 · · · xn−1ee
cxn−1xn

:: xn ee
cxnxn+1

88xn+1 · · · (2.4)




c (o) −cox1
0 · · · · · · · · · 0

−cox1
c (x1) −cx1x2

0 · · · · · ·
...

0 −cx1x2
c (x2) cx2x3

0 0
...

. . . . . . . . . . . . . . .
...

... · · · . . . −cxnxn−1
c (xn) −cxnxn+1

0
... · · · . . . . . . . . . . . .
0 · · · · · · · · · 0




(2.5)

Remark 2.4 (Random walk). If (V,E, c) is given as in Definition 2.2, then for
(x, y) ∈ E, set

pxy :=
cxy
c(x)

(2.6)

and note then {pxy} in (2.6) is a system of transition probabilities, i.e.,
∑
y pxy = 1

for all x ∈ V (see Figure 2.1 below).

A Markov-random walk on V with transition probabilities (pxy) is said to be
reversible iff there exists a positive function c̃ on V such that

c̃(x)pxy = c̃(y)pyx for all (x, y) ∈ E. (2.7)

Lemma 2.5. There is a bijective correspondence between reversible Markov-walks on
the one hand, and conductance functions on the other.
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px y2
px y3

px y1

Fig. 2.1. Transition probabilities pxy at a vertex x (in V )

Proof. If c is a conductance function on E (see Definition 2.1), then (pxy), defined in
(2.6), is a reversible walk. This follows from cxy = cyx.

Conversely, if (2.7) holds for a system of transition probabilities (pxy =
= Prob(x 7→ y)), then cxy := c̃(x)pxy is a conductance function, where

c̃(x) =
∑

y∼x
cxy.

For results on reversible Markov chains, see e.g., [27].

3. ELECTRICAL CURRENT AS FRAME COEFFICIENTS

The role of the graph-network setting (V,E, c,HE) introduced above is, in part, to
model a family of electrical networks; one application among others. Here G is a
graph with vertices V , and edges E. Since we study large networks, it is helpful to
take V infinite, but countable. Think of a network of resistors placed on the edges
in G. In this setting, the functions v(x,y) in HE , indexed by pairs of vertices, represent
dipoles. They measure voltage drop in the network through all possible paths between
the two vertices x and y. Now the conduction function c is given, and so (electrical)
current equals the product of conductance and voltage drop; in this case voltage
drop is computed over the paths made up of edges from x to y. For infinite systems
(V,E, c) the corresponding dipoles vxy are not in l2 (V ), but they are always in HE ;
see Lemma 3.4 below.

For a fixed function u in HE (voltage) and e in E we calculate the current I (u, e),
and we show that these numbers yield frame coefficients in a natural Parseval frame
(for HE) where the frame vectors making up the Parseval frame are ve, e = (x, y)
in E.
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This result will be proved below. For general background references on frames
in Hilbert space, we refer to [8, 12, 16, 24, 25, 30], and for electrical networks, see
[3,4,9,15,29,33,35]. The facts on electrical networks we need are the laws of Kirchhoff
and Ohm, and our computation of the frame coefficients as electrical currents is based
on this, in part.

Definition 3.1. Let H be a Hilbert space with inner product denoted 〈·, ·〉, or 〈·, ·〉H
when there is more than one possibility to consider. Let J be a countable index set,
and let {wj}j∈J be an indexed family of non-zero vectors in H . We say that {wj}j∈J
is a frame for H iff there are two finite positive constants b1 and b2 such that

b1 ‖u‖2H ≤
∑

j∈J

∣∣〈wj , u〉H
∣∣2 ≤ b2 ‖u‖2H (3.1)

holds for all u ∈H . We say that it is a Parseval frame if b1 = b2 = 1.

Lemma 3.2. If {wj}j∈J is a Parseval frame in H , then the (analysis) operator
A = AH : H −→ l2 (J),

Au =
(
〈wj , u〉H

)
j∈J (3.2)

is well-defined and isometric. Its adjoint A∗ : l2 (J) −→H is given by

A∗
(

(γj)j∈J

)
:=
∑

j∈J
γjwj (3.3)

and the following hold:

1. The sum on the RHS in (3.3) is norm-convergent;
2. A∗ : l2 (J) −→H is co-isometric; and for all u ∈H , we have

u = A∗Au =
∑

j∈J
〈wj , u〉wj , (3.4)

where the RHS in (3.4) is norm-convergent.

Proof. The details are standard in the theory of frames; see the cited papers above.
Note that (3.1) for b1 = b2 = 1 simply states that A in (3.2) is isometric, and so
A∗A = IH = the identity operator in H , and AA∗ = the projection onto the range
of A.

When a conductance function c : E → R+ ∪ {0} is given, we consider the energy
Hilbert space HE (depending on c) with inner product and norm:

〈u, v〉HE
:=

1

2

∑∑

(x,y)∈E
cxy

(
u(x)− u(y)

)
(v(x)− v(y)) (3.5)

and
‖u‖2HE

= 〈u, u〉HE
=

1

2

∑∑

(x,y)∈E
cxy |u(x)− u(y)|2 <∞. (3.6)
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We shall assume that (V,E, c) is connected (see Definition 2.1). It is shown that
then (3.4)–(3.5) define HE as a Hilbert space of functions on V ; functions defined
modulo constants; see also 4 below.

Further, for any pair of vertices x, y ∈ V , there is a unique dipole vector vxy ∈HE

such that
〈vxy, u〉HE

= u(x)− u(y) (3.7)

holds for all u ∈HE , see Lemma 3.4 below.

Remark 3.3. We illustrate this Parseval frame in Section 7.4 with a finite-
-dimensional example.

3.1. DIPOLES

Let (V,E, c,HE) be as described above, and assume that (V,E, c) is connected. Note
that “vectors” in HE are equivalence classes of functions on V (= the vertex set in
the graph G = (V,E)).

Lemma 3.4 ([19]). For every pair of vertices x, y ∈ V , there is a unique vector
vxy ∈HE satisfying

〈u, vxy〉HE
= u(x)− u(y) (3.8)

for all u ∈HE.

Proof. Fix a pair of vertices x, y as above, and pick a finite path of edges (xi, xi+1) ∈ E
such that cxi,xi+1

> 0, and x0 = y, xn = x. Then

u(x)− u(y) =
n−1∑

i=0

u (xi+1)− u (xi)

=

n−1∑

i=0

1
√
cxixi+1

√
cxixi+1 (u (xi+1)− u (xi)) (3.9)

and, by the Schwarz inequality, we have the following estimate:

|u(x)− u(y)|2 ≤
(
n−1∑

i=0

1

cxixi+1

)
n−1∑

j=0

cxjxj+1 |u (xj+1)− u (xj)|2

≤ (Constxy) ‖u‖2HE
,

valid for all u ∈ HE , where we used (3.6) in the last step of this a priori estimate.
But this states that the linear functional:

Lxy : HE 3 u 7−→ u(x)− u(y) (3.10)

is continuous on HE w.r.t. the norm ‖·‖HE
. Hence existence and uniqueness for

vxy ∈HE follows from Riesz’ theorem. We get a unique vxy ∈HE such that

Lxy (u) = 〈vxy, u〉HE
for allu ∈HE .
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Remark 3.5. Let x, y ∈ V be as above, and let vxy ∈HE be the dipole. One checks,
using (2.1)–(2.2) that

∆vxy = δx − δy. (3.11)

But this equation (3.11) does not determine vxy uniquely. Indeed, if w is a function
on V satisfying ∆w = 0, i.e., w is harmonic, then vxy +w also satisfies eq. (3.11). (In
[20,21] we studied when (V,E, c) has non-constant harmonic functions in HE .)

The system of vectors vxy in (3.7) indexed by pairs of vertices carry a host of
information about the given system (V,E, c,HE), for example the computation of
resistance metric.

Lemma 3.6. When c (conductance) is given and assume (V, c) is connected, set

dc (x, y) := sup

{
1

‖u‖2HE

∣∣∣ u ∈HE , u(x) = 1, u(y) = 0

}
. (3.12)

Then dc (x, y) is a metric on V , and

dc (x, y) = ‖vxy‖2HE
, (3.13)

where the dipole vectors are specified as in (3.7).

Proof. Consider u ∈ HE as in (3.12), i.e., u(x) = 1, u(y) = 0. Using (3.7) and the
Schwarz inequality, we then get

1 = u(x)− u(y) =
∣∣∣〈vxy, u〉HE

∣∣∣
2

≤ ‖vxy‖2HE
‖u‖2HE

.

Since we know the optimizing vectors in the Schwarz inequality, the desired formula
(3.13) now follows from (3.12) and (3.7). But (3.12) is known to yield a metric and
the lemma follows.

The next lemma offers a lower bound for the resistance metric between any two
vertices when (V,E, c) is given. Given any two vertices x and y, we prove the following
estimate: distc (x, y) ≥ sum of dissipation along any path of edges from x to y.

Lemma 3.7. Let G = (V,E, c) be as before. For all finite paths

x0 := x→ (ei)→ xn := y,

we have

distc (x, y) ≥
n−1∑

i=0

Resxixi+1

∣∣∣I (vxy)i,i+1

∣∣∣
2

︸ ︷︷ ︸
dissipation

, (3.14)

where Res = 1
c denotes the resistance.



Frames and factorization of graph Laplacians 301

Proof. In general there are many paths from x to y when x and y are fixed vertices
(see Figure 3.1).

‖vxy‖2HE
= distc (x, y)

=
∑

e∈E(dir)

∣∣∣〈we, vxy〉HE

∣∣∣
2

(we :=
√
ceve)

=
∑

e∈E(dir)

cc

∣∣∣〈ve, vxy〉HE

∣∣∣
2

≥
n−1∑

i=0

ci,i+1 |vxy (xi)− vxy (xi+1)|2

=
n−1∑

i=0

Resxixi+1

∣∣∣I (vxy)xixi+1

∣∣∣
2

.

x

y

x0 = x

x0
� = x

xn = y

xm
� = y

ei = Hxi xi+1L

e j
� = Ix j

� x� j+1M

vxy =
n−1∑

i=0

vi,i+1 =
m−1∑

j=0

vj,j+1

Fig. 3.1. Two finite paths connecting x and y, where ei = (xixi+1) , ẽj = (x̃j x̃j+1) ∈ E

Now pick an orientation for each edge, and denote by E(ori) the set of oriented
edges.

Theorem 3.8. Let
(
V,E, c, E(ori)

)
and HE be as above. Then the system of vectors

wxy :=
√
cxyvxy, indexed by (xy) ∈ E(ori), (3.15)

is a Parseval frame for HE.
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Proof. We will show that (3.1) holds for constants b1 = b2 = 1 for the vectors(
w(xy)

)
(xy)∈E(ori) , see (3.7)–(3.15). Indeed, we have for u ∈HE :

‖u‖2HE
=

(by (3.6))

∑

(xy)∈E(ori)

cxy |u(x)− u(y)|2

=
(by (3.7))

∑

(xy)∈E(ori)

cxy

∣∣∣〈vxy, u〉HE

∣∣∣
2

=
∑

(xy)∈E(ori)

∣∣∣
〈√

cxyvxy, u
〉

HE

∣∣∣
2

=
(by (3.15))

∑

(xy)∈E(ori)

∣∣∣〈wxy, u〉HE

∣∣∣
2

which is the desired conclusion.

Remark 3.9. While the vectors wxy :=
√
cxyvxy, (xy) ∈ E(ori), form a Parseval

frame in HE in the general case, typically this frame is not an orthogonal basis
(ONB) in HE , although it is in Example 7.1 below.

To see when our Parseval frames are in fact ONBs, we use the following lemma.

Lemma 3.10. Let {wj}j∈J be a Parseval frame in a Hilbert space H , then
‖wj‖HE

≤ 1, and it is an ONB in H if and only if ‖wj‖H = 1 for all j ∈ J .

Proof. Follows from an easy application of

‖u‖2H =
∑

j∈J

∣∣〈wj , u〉H
∣∣2 , u ∈H . (3.16)

Plug in wj0 for u in (3.16).

Remark 3.11. Frames in HE consisting of our system (3.15) are not ONBs when
resisters are configured in non-linear systems of vertices, for example, resisters in
parallel. See Figure 3.2 and Example 7.4.

V = Band V = Z2

Fig. 3.2. Non-linear system of vertices
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In these examples one checks that

1 > ‖wxy‖2HE
= cxy ‖vxy‖2HE

= cxy (vxy(x)− vxy(y)) . (3.17)

That is the current flowing through each edge e = (x, y) ∈ E is < 1, or equivalently
the voltage-drop across e is < resistance

vxy(x)− vxy(y) <
1

ccy
= resistance.

Definition 3.12. Let V,E, c,HE be as above and for u ∈HE , set

I (u)(xy) := cxy (u(x)− u(y)) for (x, y) ∈ E. (3.18)

By Ohm’s law, the function I (u)(xy) in (3.18) represents the current in a network.
A choice of orientation may be assigned as follows (three different ways):

1. The orientation of every (xy) ∈ E may be chosen arbitrarily.
2. The orientation may be suggested by geometry; for example in a binary tree, as

shown in Figure 3.3 below.
3. Or the orientation may be assigned by the experiment of inserting one Amp at a

vertex, say o ∈ V , and extracting one Amp at a distinct vertex, say xdist ∈ V . We
then say that an edge (xy) ∈ E is positively oriented if I (u)xy > 0 where I (u)xy
is the induced current; see (3.18). See Figure 3.4 below.

Fig. 3.3. Geometric orientation (see also Figure 7.4 below)

o xdist

Fig. 3.4. Electrically induced orientation
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Corollary 3.13 (Figure 3.4). Let (V,E, c,HE) be as above, and let E(ori) be assigned
as in (3) of Definition 3.12. Then every u ∈HE has a norm-convergent representation

u =
∑

(xy)∈E(ori)

I (u)xy vxy. (3.19)

Proof. By Theorem 3.8 and Lemma 3.2, we have the following norm-convergent rep-
resentation

u =
∑

(xy)∈E(ori)

〈wxy, u〉HE
wxy, (3.20)

see (3.4). Now, by statements (3.15) and (3.18), we get

〈wxy, u〉HE
wxy = I (u)xy vxy. (3.21)

Considering (3.20) and (3.21), the desired conclusion (3.19) then follows.

4. LEMMAS

Starting with a given network (V,E, c), we introduce functions on the vertices V ,
voltage, dipoles, and point-masses; and on the edges E, conductance, and current. We
introduce a system of operators which will be needed throughout, the graph-Laplacian
∆, and the transition operator P . We show that there are two Hilbert spaces serving
different purposes, l2(V ), and the energy Hilbert space HE ; the latter depending on
choice of conductance function c.

Lemma 4.2 below summarizes the key properties of ∆ as an operator, both in l2(V )
and in HE . The metric properties of networks (V,E, c) depend on HE (Lemma 4.3),
and not on l2(V ).

Recall that the graph-Laplacian ∆ is automatically essentially selfadjoint as a
densely defined operator in l2(V ), but not as a HE operator [17, 21]. In Section 7
we compute examples where (∆,HE) has deficiency indices (m,m), m > 0. These
results make use of an associated reversible random walk, as well as the transition
operator P .

Let (V,E, c) be as above; note we are assuming that G = (V,E) is connected; so
there is a point o in V such that every x ∈ V is connected to o via a finite path of
edges. We will set V ′ := V \ {o}, and consider l2 (V ) and l2 (V ′). If x ∈ V , we set

δx(y) =

{
1 if y = x,

0 if y 6= x.
(4.1)

Set HE := the set of all functions u : V → C such that

‖u‖2HE
:=

1

2

∑∑

(x,y)∈E
cxy |u(x)− u(y)|2 <∞, (4.2)
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and we note ([19]) that HE is a Hilbert space. Moreover, for all x, y ∈ V , there is a
real-valued solution vxy ∈HE to the equation

∆vx,y = δx − δy. (4.3)

If y = o, we set vx := vx,o, and note

∆vx = δx − δo. (4.4)

In this case, we assume that vx is defined only for x ∈ V ′.
Definition 4.1. Let

(
V,E, c, o,∆, {vx}x∈V ′

)
be as above, and set

D2 := span
{
δx
∣∣ x ∈ V

}
(4.5)

and
DE := span

{
vx
∣∣ x ∈ V ′

}
, (4.6)

where by “span” we mean of all finite linear combinations.

Lemma 4.2. The following hold:

1. 〈∆u, v〉l2 = 〈u,∆v〉l2 for all u, v ∈ D2;
2. 〈∆u, v〉HE

= 〈u,∆v〉HE
for all u, v ∈ DE;

3. 〈u,∆u〉l2 ≥ 0 for all u ∈ D2;
4. 〈u,∆u〉HE

≥ 0 for all u ∈ DE, where for u, v ∈HE we set

〈u, v〉HE
=

1

2

∑∑

(x,y)∈E
cxy(u(x)− u(y)) (v(x)− v(y)) . (4.7)

Moreover, we have

5. 〈vx,y, u〉HE
= u(x)− u(y) for all x, y ∈ V .

Finally,

6.
δx (·) = c(x)vx (·)−

∑

y∼x
cxyvy (·) for all x ∈ V ′.

Proof. (2) We have 〈∆u, v〉HE
= 〈u,∆v〉HE

, for all u, v ∈ DE . Set vx := vxo, where o
is a fixed base-point in V , V ′ := V \ {o}, so ∆vx = δx−δo, x ∈ V ′. Set u =

∑
x∈V ′ ξxvx,

v =
∑
x∈V ′ ηxvx, where the summations are finite by convention. Then

〈∆u, v〉HE
=
∑

V ′

∑

V ′

ξxηy 〈δx − δo, vy〉HE

=
∑

V ′

∑

V ′

ξxηy
(
(δx(y)− δx (o)︸ ︷︷ ︸

=0

)− (δo(y)︸ ︷︷ ︸
=0

− δo (o)︸ ︷︷ ︸
=1

)
)

=
∑

V ′

∑

V ′

ξxηy (δxy + 1)

=
∑

V ′

ξxηy +
(∑

V ′

ξx

)(∑

V ′

ηy

)

= 〈u,∆v〉HE
(by symmetry).

For the remaining, see [19,20].
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Lemma 4.3. Let (V,E, c, o) be as above. Then the function

Nc (x, y) := ‖vx − vy‖2HE
(4.8)

is conditionally negative definite, i.e., for all finite system {ξx} ⊆ C such that∑
x∈V ′ ξx = 0, we have ∑

x

∑

y

ξxξyNc (x, y) ≤ 0. (4.9)

Proof. Compute the LHS in (4.9) as follows. If
∑
ξx = 0, we have

∑
ξxξyNc (x, y)

=−
∑∑

ξxξy 〈vx, vy〉HE
−
∑∑

ξxξy 〈vy, vx〉HE

=− 2
∥∥∥
∑

x

ξxvx

∥∥∥
2

HE

.

We show also the following

Lemma 4.4 ([19]).
{
u ∈HE

∣∣ 〈u, δx〉HE
= 0 for all x ∈ V

}
=
{
u ∈HE

∣∣∆u = 0
}
. (4.10)

When N is a fixed negative definite function, we get an associated Hilbert space
HN by completing finitely supported functions ξ on V subject to the condition∑
x∈V ξx = 0, under the inner product

‖ξ‖2HN
:= −

∑

x

∑

y

ξxξyN (x, y)

and quotienting out with ∑

x

∑

y

ξxξyN (x, y) = 0.

Lemma 4.5. Assume (V,E, c) is connected. If a negative definite function N on
V × V satisfies N = Nc, then

HNc
= HE , (4.11)

where HE is the energy Hilbert space from 3 defined on the prescribed functions.

Proof. By Lemma 4.3, we have

‖ξ‖2HNc
=
∥∥∥
∑

x∈V ′
ξxvx

∥∥∥
2

HE

, (4.12)

where vx = vox is a system of dipoles corresponding to a fixed base point o ∈ V , and
V ′ = V \ {o}, and

〈vx, u〉HE
= u(x)− u (o) for allu ∈HE . (4.13)
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Hence, we need only prove that all the finite summations
∑
x∈V ′ ξxvx subjecting to

∑
x∈V ′ ξx = 0 are dense in HE . But if u ∈ HE , u ∈

{∑
x∈V ′ ξxvx

∣∣ ∑
x∈V ′ ξx = 0

}⊥
(the orthogonal-complement), then

〈vx, u〉HE
− 〈vy, u〉HE

= 0

for all x, y ∈ V ′. Hence by (4.13) we get u(x) = u(y) for all pairs x, y ∈ V ′; and
u(x) = u (o), x ∈ V ′. Since (V,E, c) is connected, it follows that u is constant. But
with the normalization vx (o) = 0 (x ∈ V ′), we conclude that u must be zero.

Lemma 4.6. Let (V,E, c) be a connected network, and let HE be the energy Hilbert
space. Then, for all f ∈HE and x ∈ V , we have

〈δx, f〉HE
= (∆f) (x). (4.14)

Proof. We compute LHS(4.14) with the use of eq. (4.7) in Lemma 4.2. Indeed,

〈δx, f〉HE
=

(4.7)

1

2

∑∑

(st)∈E
cst (δx (s)− δx (t)) (f (s)− f (t))

=
∑

t∼x
cxt (f(x)− f (t)) = (∆f) (x),

where we used (2.2) in Definition 2.2 in the last step.

Corollary 4.7. Let (V,E, c) be as above. Then

〈δx, δy〉HE
=





c̃(x) =
∑
t∼x cxt if y = x,

−cxy if (xy) ∈ E,
0 if (xy) ∈ E and x 6= y.

(4.15)

Proof. Immediate from the lemma.

Corollary 4.8. Let (V,E, c,∆) be as above. Then

HE 	 {δx | x ∈ V } = {u ∈HE |∆u = 0} . (4.16)

Proof. This is immediate from (4.14) in Lemma 4.6. (Note that “	” in (4.16) means
ortho-complement.)

Corollary 4.9. Let (V,E, c,∆) be as above. Then, for every x ∈ V , we have
∑

y∼x
cxyvxy = δx. (4.17)

Proof. Immediate from (4.14) in Lemma 4.6.
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5. THE HILBERT SPACES HE AND l2 (V ′),
AND OPERATORS BETWEEN THEM

The purpose of this section is to prepare for the two results (Sections 5 and 6) on
factorization to follow.

Definition 5.1. Let
(
V,E, c, o, {vx}x∈V ′

)
be specified as in Sections 2–4, where c is

a fixed conductance function. Set

D ′l2 := all finitely supported functions ξ on V ′such that
∑

x

ξx = 0. (5.1)

Then assuming that V is infinite, we conclude that D ′l2 is dense in l2 (V ′).

Lemma 5.2. For (ξx) ∈ D ′l2 , set

K (ξ) :=
∑

x∈V ′
ξxvx ∈HE . (5.2)

Then K (= Kc) is a densely defined, and closable operator

K : l2 (V ′) −→HE

with domain D ′l2 .

Proof. We must prove that the norm-closure of the graph of K in l2 ×HE is again
the graph of a linear operator; equivalently, if limn→∞

∥∥ξ(n)
∥∥
l2

= 0, ξ(n) ∈ Dl2 ; and
if there exists u ∈HE such that

lim
n→∞

∥∥∥K
(
ξ(n)

)
− u
∥∥∥

HE

= 0, (5.3)

then u = 0 in HE .
We prove this by establishing a formula for an adjoint operator,

K∗ : HE −→ l2 (V ′)

having as its domain
{∑

x

ξxvx
∣∣ finite sums, ξx ∈ C such that

∑
x ξx = 0

}
. (5.4)

Setting

K∗
(∑

x

ξxvx

)
= (ζx) ,

where
ζx =

∑

y

〈vx, vy〉HE
ξy (5.5)
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on the space in (5.4), we show that this is a well-defined, densely defined, linear
operator, and that

〈
K∗
(∑

x

ξxvx

)
, η
〉
l2

=
〈∑

x

ξxvx,Kη
〉

HE

(5.6)

holds for all η ∈ D ′l2 . This shows that a well-defined adjoint K∗ operator exists (by
(5.5)), and that therefore the implication in (5.3) is valid.

Now let ξ, η ∈ D ′l2 as in (5.1). Then

(LHS)(5.6) =

〈∑

y

〈vx, vy〉HE
ξy, η

〉

l2

=
∑

x

∑

y

ξy 〈vy, vx〉HE
ηx

=

〈∑

y

ξyvy,
∑

x

ηxvx

〉

HE

=
(by (5.2))

〈∑

y

ξyvy,Kη

〉

HE

= (RHS)(5.6) .

6. THE FRIEDRICHS EXTENSION

Below we fix a conductance function c which turns the system (V,E, c) into a con-
nected network (see Section 2), and we will study the c-graph Laplacian ∆ in HE ,
the energy Hilbert space.

Notice that ∆ will then be densely defined in HE , see Definition 4.1 and
Lemma 4.2. Below we study the Friedrichs extension of ∆ when it is defined on
its natural dense domain DE in HE .

Let (V,E, c, o, {vx} ,∆) be as above, i.e.,

• G

{
V = set of vertices, assumed countable infinite ℵ0,

E = edges, V assumed E−connected,

• c : E −→ R+ ∪ {0} a fixed conductance function,

• ∆ (:= ∆c) the graph Laplacian,

• o ∈ V a fixed base-point such that ∆vx = δx − δo,

• V ′ := V \{o},

• HE := span {vx | x ∈ V ′}.
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Recall we proved in Section 2 that ∆ is a semibounded Hermitian operator with dense
domain DE in HE .

In this section, we shall be concerned with its Friedrichs extension, now denoted
∆Fri; for details on the Friedrichs extension, see e.g., [1, 10]; and, in the special case
of (∆,HE), see [19,21].

In all cases, we have that ∆, ∆Fri, and ∆∗ as operators in HE act on subspaces
of functions on V via the following formula:

(∆u) (x) =
∑

y∼x
cxy (u(x)− u(y)) , (6.1)

where u is a function on the vertex set V .

Lemma 6.1. As an operator in HE, the graph Laplacian ∆ (with domain DE) may,
or may not, be essentially selfadjoint. Its deficiency indices are (m,m), where

m = dim
{
u ∈HE

∣∣∆u = −u
}
. (6.2)

Proof. Recall that if S is a densely defined operator in a Hilbert space H such that

〈u, Su〉 ≥ 0 for all u ∈ dom (S) , (6.3)

then S will automatically have indices (m,m) where m = dim (N (S∗ + I)), and
where S∗ denotes the adjoint operator, i.e.,

dom (S∗) =
{
u ∈H

∣∣ there existsC <∞

such that |〈u, Sϕ〉| ≤ C ‖ϕ‖ for allϕ ∈ dom (S)
}
.

(6.4)

We may apply this to H = HE , and S := ∆ on the domain DE . One checks that,
if u ∈ dom (S∗), i.e., u ∈ dom((∆|DE

)∗), then

(S∗u) (x) =
∑

y∈E(x)

cxy (u(x)− u(y)) ,

(i.e., the pointwise action of ∆ on functions) and the conclusion in (6.2) follows from
the assertion about N (S∗ + I).

Corollary 6.2. Let pxy :=
cxy

c(x) be the transition-probabilities in Remark 2.4 (see also
Figure 2.1), and let

(Pu) (x) :=
∑

y∼x
pxyu(y) (6.5)

be the corresponding transition operator, accounting for the p-random walk on (V,E).
Let (∆,HE) be the HE-symmetric operator with domain DE, see Definition 4.1. Then
(∆,HE) has deficiency indices (m,m), m > 0, if and only if there is a function u
on V , u 6= 0, u ∈HE satisfying

(
1 +

1

c(x)

)
u(x) = (Pu) (x) for all x ∈ V. (6.6)



Frames and factorization of graph Laplacians 311

Proof. Since (∆|DE
)∗ acts pointwise on functions on V (see Lemma 6.1), we only need

to verify that the equation −u = ∆u translates into (6.6), but we have:

−u(x) = c(x)u(x)−
∑

y∼x
cxyu(y)⇐⇒

(
1 +

1

c(x)

)
u(x) =

∑

y∼x

cxy
c(x)

u(y)

which is the desired eq. (6.6).
For u from (6.6) to be in dom((∆|DE

)∗) we must have
∑

(xy)∈E
cxy |u(x)− u(y)|2 <∞

as asserted.

In the discussion below, we use that both operators ∆ and P take real valued
functions on V to real valued functions, and that P is positive, satisfying P1 = 1,
where 1 is the constant function “one” on V .

Lemma 6.3. If u is a non-zero real valued function on V satisfying (6.2), or equiv-
alently (6.6), and if p ∈ V satisfies u (p) 6= 0, then there is an infinite path of edges
(xixi+1) ∈ E such that x0 = p, and

u (xk+1) ≥
k∏

i=0

(
1 +

1

c (xi)

)
u (p) . (6.7)

Proof. We may assume without loss of generality that u (p) > 0. Set x0 = p, and
x1 := arg max {u(y) | y ∼ x0}, so u (x1) = maxu

∣∣
E(x0)

. Then

u (x1) ≥
∑

y∼x0

px0yu(y) = (Pu) (x0) =

(
1 +

1

c (x0)

)
u (x0) ,

where we used (6.6) in the last step.
Now for the induction: Suppose x1, . . . , xk have been found as specified; then set

xk+1 := arg max {u(y) | y ∼ xk}, so

u (xk+1) ≥ (Pu) (xk) =

(
1 +

1

c (xk)

)
u (xk) .

A final iteration then yields the desired conclusion (6.7).

Remark 6.4. In Section 7.1 below, we illustrate a family of systems (V,E, c), where
∆ in HE has indices (1, 1). In these examples, V = Z+∪{0}, and the edges E consists
of nearest neighbor links, i.e., if x ∈ Z+,

E(x) = {x− 1, x+ 1} , while E (0) = {1} .
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Lemma 6.5. A function u on V is in the domain of ∆Fri (the Friedrichs extension)
if and only if u is in the completion of DE with respect to the quadratic form

DE 3 ϕ 7−→ 〈ϕ,∆ϕ〉HE
∈ R+ ∪ {0} (6.8)

and
∆u ∈HE . (6.9)

Proof. The assertion follows from an application of the characterization of ∆Fri in
[1, 10] combined with the following fact: If ϕ =

∑
x∈V ξxvx is a finite sum with

coefficient (ξx) satisfying
∑
x ξx = 0, then

〈ϕ,∆ϕ〉HE
=
∑

x∈V ′
|ξx|2 . (6.10)

Moreover, eq. (6.9) holds if and only if

‖∆u‖2HE
:=

1

2

∑

(x,y)∈E
cxy |(∆u) (x)− (∆u) (y)|2 <∞.

We now prove formula (6.10). Assume ϕ =
∑
x∈V ′ ξxvx is as stated. Then

〈ϕ,∆ϕ〉HE
=
〈∑

x
ξxvx,∆

(∑
x
ξyvy

)〉
HE

=
〈∑

x
ξxvx,

∑
y
ξy (δy − δo)

〉
HE

=
∑

x

∑
y
ξxξy 〈vx, δy〉HE

(since ∑
yξy = 0)

=
∑

x
|ξx|2 .

Lemma 6.6. Let HE denote the completion of DE, and let D ′l2 be the dense subspace
in l2 (V ′), given by

∑
x∈V ′ ξx = 0,

∑
x |ξx|

2
<∞. Set

L (ξx) :=
∑

x

ξxδx. (6.11)

Then L : l2 (V ′) −→ HE is a closable operator with dense domain D ′l2 and the
corresponding adjoint operator

L∗ : HE −→ l2 (V ′)

satisfies

L∗
(∑

x∈V ′
ξxvx

)
= ξ. (6.12)
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Proof. To prove the assertion, we must show that, if ξ is a finitely supported function
on V ′ such that

∑
x∈V ′ ξx = 0, then

〈L (ξ) , u〉HE
= 〈ξ, η〉l2 , (6.13)

where
u =

∑

y∈V ′
ηyvy. (6.14)

We prove (6.13) as follows:

(LHS)(6.13) =
〈

∆(
∑

x
ξxvx),

∑
y
ηyvy

〉
HE

=
〈∑

x
ξxvx,∆(

∑
y
ηyvy)

〉
HE

=
∑

x
ξxηx = (RHS)(6.13) ,

where we used formula (6.10) in the last step of the computation.

Remark 6.7. To understand ∆ as an operator in the respective subspaces of HE

recall that HE contains two systems of vectors {δx} and {vx} both indexed by V ′.
Neither of the two systems is orthogonal in the inner product of HE .
We have 〈vx, vy〉HE

= vx(y) = vy(x). Recall our normalization vx (o) = 0, where
o is the fixed base-point. Moreover (see Corollary 4.7),

〈δx, δy〉HE
=





−cxy if (x, y) ∈ E,
c(x) if x = y,

0 otherwise,

and

〈δx, vy〉HE
=

{
δxy if x, y ∈ V ′,
−1 if x = o, y ∈ V ′.

Corollary 6.8. If x ∈ V ′, then δx ∈HE and

δx (·) = c(x)vx (·)−
∑

y∼x
cxyvy (·) . (6.15)

Proof. To show this, it is enough to check equality of
〈
LHS(6.15), vx

〉
HE

=
〈
RHS(6.15), vx

〉
HE

for all x ∈ V ,

and this follows from an application of the formulas in Remark 6.7 above.

Theorem 6.9. Let (V,E, c,∆ (= ∆c) ,HE ,∆Fri) be as above. Let L and L∗ be the
closed operators from Lemma 6.6. Then
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(i) LL∗ is selfadjoint, and
(ii) LL∗ = ∆Fri.

Proof. Conclusion (i) follows for every closed operator L with dense domain, we have
that LL∗ is selfadjoint. To prove (ii), we must verify that

LL∗u = ∆u for all u ∈ D ′E . (6.16)

Let u =
∑
x∈V ′ ξxvx be a finite sum such that

∑
x ξx = 0. Then

LL∗u =
(by (6.12))

Lξ

=
(by (6.11))

∑

x∈V ′
ξxδx

=
(since

∑
ξx=0)

∑

x∈V ′
ξx (δx − δo)

=
(by (6.11))

∑

x∈V ′
ξx∆vx

=
since finite sum

∆

(∑

x

ξxvx

)

= ∆u = (RHS)(6.16) .

Corollary 6.10. We have the Greens-Gauss identity:

(∆y (〈vx, vy〉)) (z) = δxz for all x, y, z ∈ V ′. (6.17)

The inner products 〈vx, vy〉 := 〈vx, vy〉HE
constitute the Gramian of the frame

Theorem 3.8.

Proof.

(LHS)(6.17) =
∑

w∼z
czw

(
〈vx, vz〉HE

− 〈vx, vw〉HE

)

=
∑

w∼z
czw (vx(z)− vx (w))

= (∆vx) (z)

= (δx − δo) (z) = δxz = (RHS)(6.17) ,

where we used that z ∈ V ′ = V \ {o} in the last step of the verification.
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6.1. THE OPERATOR P VERSUS ∆

Let (V,E, c) be a network with vertices V , edges E, and conductance function
c : E → R+ ∪ {0}. Setting

c̃(x) :=
∑

y∼x
cxy, pxy :=

cxy
c̃(x)

, and

(∆u) (x) =
∑

y∼x
cxy (u(x)− u(y)) ,

(Pu) (x) =
∑

y∼x
pxyu(y),

(6.18)

we have the connection

∆ = c̃ (I − P ) , and (6.19)

P = I − 1

c̃
∆ (6.20)

from (6.6) in Corollary 6.2.

Theorem 6.11. Let HE (depending on c) be the energy Hilbert space, and set l2 (c̃) =
l2 (V, c̃) = all functions on V with inner product

〈u1, u2〉l2(c̃) =
∑

x∈V
c̃(x)u1(x)u2(x). (6.21)

Then

1. ∆ is Hermitian in HE, but not in l2 (c̃),
2. P is Hermitian in l2 (c̃) and in HE.

Proof. The first half of conclusion (1) is contained in Lemma 4.2. To show that P is
also Hermitian in HE , use (6.20) and the following lemma applied to f = 1

c̃ .

Lemma 6.12. Let ∆, P , and HE be as above, and let f be a function on V , then

〈(f∆) vx, vy〉HE
= 〈vx, (f∆) vy〉HE

. (6.22)

Proof. We compute as follows, using (3.11):

LHS(6.22) = 〈f (·) (δx − δo) , vy〉HE

= (f (·) (δx − δo)) (y)− (f (·) (δx − δo)) (o)

= f(y)δxy + f (o)

for all vertices x, y ∈ V ′ = V \ {o}, where o is a fixed choice of base-point in the vertex
set V . The desired conclusion (6.22) follows.
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Proof of Theorem 6.11, part (2). We show that

〈(Pu1) , u2〉l2(c̃) = 〈u1, (Pu2)〉l2(c̃)

for all finitely supported functions u1, u2 on V .
But this follows from the assumption c̃(x)pxy = c̃(y)pyx (reversible). Since

∑

x

c̃(x)pxy =
∑

x

c̃(y)pyx = c̃(y)
∑

x

pyx = c̃(y),

i.e., the function c̃ is left-invariant for P , viz: c̃P = c̃ viewing P = (pxy) as a Markov
matrix.

The final assertion, that ∆ is not Hermitian in l2 (c̃) follows from Lemma 4.2, and
the fact that ∆ does not commute with the multiplication operator f = 1

c̃ .

Corollary 6.13. Let (Pu) (x) =
∑
y∼x pxyu(y) be the transition operator, where

pxy =
cxy
c̃(x)

(6.23)

is defined for (xy) ∈ E, c is a fixed conductance on (V,E), and

c̃(x) =
∑

y∼x
cxy. (6.24)

Then P is selfadjoint and contractive in l2 (V, c̃).

Proof. We proved in Lemma 4.2 (3) that 〈u,∆u〉l2 ≥ 0 holds for all u ∈ l2 where
〈·, ·〉l2 referes to the un-weighted l2-inner product. The connection between the two
inner products is as follows: 〈u, c̃u〉l2 = ‖u‖2l2(c̃) which yields the following:

Using (6.23) and (6.24), we get

Pu = u− 1

c̃
∆u, (6.25)

so c̃Pu = c̃u−∆u, and as a point-wise identity on V . Hence

〈u, Pu〉l2(c̃) = 〈u, c̃u−∆u〉l2
= ‖u‖2l2(c̃) − 〈u,∆u〉l2
≤ ‖u‖2l2(c̃) (by Lemma 4.2 (3))

holds for all u ∈ l2 (c̃).
Since we also proved that P (see eq. (6.25)) is l2 (c̃)-Hermitian, we conclude that

it is contractive and selfadjoint in the Hilbert space l2 (c̃), as claimed.

Lemma 6.14. Let (V,E, c, p), ∆, and P be as above. Then a function u on V satisfies
∆u = 0 if and only if Pu = u.
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Proof. Immediate from ∆u = c̃ (u− Pu) (eq. (6.19)).

Corollary 6.15. Let (V,E, c) be as above, and set

pxy :=
cxy
c̃(x)

, (xy) ∈ E, (6.26)

where c̃(x) :=
∑
y∼x cxy. Fix o ∈ V and consider the dipoles (vx)x∈V ′ , V

′ = V \ {o},
where

〈vx, u〉HE
= u(x)− u (o) for all x ∈ V ′. (6.27)

Setting
(Pu) (x) =

∑

y∼x
pxyu(y), (6.28)

we get
Pvx =

∑

y∼x
pxyvy, (6.29)

and the following implication holds for the dense subspace DE in HE:

u ∈ DE =⇒ Pu ∈ DE , (6.30)

where

DE :=

{∑

x

ξxvx
∣∣ ξx ∈ C, finitely supported on V ′, such that

∑

x

ξx = 0

}
. (6.31)

Proof. A direct computation shows that (6.29) must hold as an identity on functions
on V , up to an additive constant.

Our assertion is that working in the Hilbert space HE implies that the additive
constant is zero. This amounts to verification of the implication (6.30), i.e., that

∑

x

ξx = 0 =⇒
∑

y

(∑

x

ξxpxy

)
= 0 (6.32)

for all finitely supported functions. But we have

∑

y

(∑

x

ξxpxy

)
=
∑

x

ξx

(∑

y

pxy

)
=
∑

x

ξx = 0

which is the desired assertion (6.32). Hence (6.30) follows.

7. EXAMPLES

The purpose of the first example is multi-fold.
First, by picking an infinite arithmetic progression of points on the line as vertex

set V , and nearest neighbors, an assignment of conductance simply amounts to a
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function on the edges (n, n+1), and we get non-trivial models where explicit formulas
are possible and transparent. For example, we can write down the dipoles vxy as
functions on V , and the corresponding resistance metric; see the formulas relating to
Figure 7.1. Among all the conductance functions we characterize the cases of reversible
Markov models where the left/right transition probabilities are the same for all vertex
points. In Section 7.2 (the binomial model) we accomplish the same characterization
of the cases of reversible Markov models where the left/right transition probabilities
are the same for all vertex points, but now every vertex in the binary tree has three
nearest neighbors.

In Section 7.4 we give a finite graph (V,E, c) as a triangular configuration, conduc-
tance c defined on the edges of the triangle, and we find the Parseval frame (thereby
illustrating Theorem 3.8).

The examples below illustrate the following: When a graph network (V,E, c) is
infinite, then the dipoles vxy as functions on V will not lie in the Hilbert space l2(V ).
Hence another justification for the energy Hilbert space HE .

7.1. V = {0} ∪ Z+

Consider G = (V,E, c), where V = {0} ∪Z+. Every sequence a1, a2, . . . in R+ defines
a conductance cn−1,n := an, n ∈ Z+, i.e.,

0 oo
a1
// 1 oo

a2
// 2 oo

a3
// 3 · · · n oo

an+1

// n+ 1 · · ·

The dipole vectors vxy (for x, y ∈ N) are given by

vxy(z) =





0 if z ≤ x,
−∑z

k=x+1
1
ak

if x < z < y,

−∑y
k=x+1

1
ak

if z ≥ y.

See Figure 7.1.

x z y

Fig. 7.1. The dipole vxy
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It follows from Lemma 3.6 that the resistance metric dist (= dc = da) is as follows:

dist (x, y) =





0 if x = y,
1

ax+1
+ · · ·+ 1

ay︸ ︷︷ ︸∑
x<k≤y

1
ak

if x < y.

Note that V = Z+ ∪ {0} with the resistance metric described above yields a
bounded metric space if and only if

∞∑

n=1

1

an
<∞. (7.1)

The corresponding graph Laplacian has the following matrix representation:




a1 −a1

−a1 a1 + a2 −a2

−a2 a2 + a3 −a3 0

−a3 a3 + a4
. . .

. . . . . . −an
−an an + an+1 −an+1

0 −an+1
. . . . . .
. . . . . .
. . . . . .




, (7.2)

that is,




(∆u)0 = a1 (u0 − u1) ,

(∆u)n = an (un − un−1) + an+1 (un − un+1) ,

= (an + an+1)un − anun−1 − an+1un+1 for all n ∈ Z+.

(7.3)

Lemma 7.1. Let G = (V, c, E) be as above, where an := cn−1,n, n ∈ Z+. Then
u ∈ HE is the solution to ∆u = −u (i.e., u is a defect vector of ∆) if and only if u
satisfies the following equation:

∞∑

n=1

an 〈vn−1,n, u〉HE
(δn−1 (s)− δn (s) + vn−1,n (s)) = 0 for all s ∈ Z+, (7.4)

where

‖u‖2HE
=

∞∑

n=1

an

∣∣∣〈vn−1,n, u〉HE

∣∣∣
2

<∞. (7.5)
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Proof. By Theorem 3.8, the set
{√

anvn−1,n

}∞
n=1

forms a Parseval frame in HE . In
fact, the dipole vectors are

vn−1,n (s) =

{
0 s ≤ n− 1

− 1
an

s ≥ n , n = 1, 2, . . . , (7.6)

and so
{√

anvn−1,n

}∞
n=1

forms an ONB in HE , and u ∈HE has the representation

u =
∞∑

n=1

an 〈vn−1,n, u〉HE
vn−1,n

(see (3.4)). Therefore, ∆u = −u if and only if

∞∑

n=1

an 〈vn−1,n, u〉HE
(δn−1 (s)− δn (s)) = −

∞∑

n=1

an 〈vn−1,n, u〉HE
vn−1,n (s)

for all s ∈ Z+, which is the assertion.

Conjecture 7.2. Consider ∆ as above as an operator in HE (depending on cn,n−1 =
an). Then ∆ is essentially selfadjoint (in HE) if and only if

∑∞
n=1

1
an

=∞. If (7.1)
holds, the indices are (1, 1).

Remark 7.3. Below we compute the deficiency space in an example with index values
(1, 1).

Lemma 7.4. Let (V,E, c = {an}) be as above. Let Q > 1 and set an := Qn, n ∈ Z+.
Then ∆ has deficiency indices (1, 1).

Proof. Suppose ∆u = −u, u ∈HE . Then,

−u1 = Q (u1 − u0) +Q2 (u1 − u2)⇐⇒ u2 =

(
1

Q2
+

1 +Q

Q

)
u1 −

1

Q
u0,

−u2 = Q2 (u2 − u1) +Q3 (u2 − u3)⇐⇒ u3 =

(
1

Q3
+

1 +Q

Q

)
u2 −

1

Q
u1,

and by induction,

un+1 =

(
1

Qn+1
+

1 +Q

Q

)
un −

1

Q
un−1, n ∈ Z+,

i.e., u is determined by the following matrix equation:

[
un+1

un

]
=

[
1

Qn+1 + 1+Q
Q − 1

Q

1 0

] [
un
un−1

]
.
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The eigenvalues of the coefficient matrix are

λ± =
1

2


 1

Qn+1
+

1 +Q

Q
±
√(

1

Qn+1
+

1 +Q

Q

)2

− 4

Q




∼ 1

2

(
1 +Q

Q
±
(
Q− 1

Q

))
=





1
1

Q

as n→∞.

Equivalently, as n→∞, we have

un+1 ∼
(

1 +Q

Q

)
un −

1

Q
un−1 =

(
1 +

1

Q

)
un −

1

Q
un−1,

and so
un+1 − un ∼

1

Q
(un − un−1) .

Therefore, for the tail-summation, we have

∑

n

Qn (un+1 − un)
2

= const
∑

n

(Q− 1)
2

Qn+2
<∞

which implies ‖u‖HE
<∞.

Next, we give a random walk interpretation of Lemma 7.4. See Remark 2.4 and
Figure 2.1.

Remark 7.5 (Harmonic functions in HE). Note that in Example 7.1 (Lemma 7.4),
the space of harmonic functions in HE is one-dimensional. In fact if Q > 1 is fixed,
then {

u ∈HE

∣∣∆u = 0
}

is spanned by u = (un)
∞
n=0, un = 1

Qn , n ∈ N; and of course ‖1/Qn‖2HE
<∞.

Proof. This is immediate from Lemma 6.14.

Remark 7.6. For the domain of the Friedrichs extension ∆Fri, we have

dom(∆Fri) =
{
f ∈HE | (f(x)− f (x+ 1))Qx ∈ l2 (Z+)

}
, (7.7)

i.e.,

dom(∆Fri) =

{
f ∈HE

∣∣∣
∞∑

x=0

|f(x)− f (x+ 1)|2Q2x <∞
}
.

Proof. By Theorem 3.8, we have the following representation, valid for all f ∈HE :

f =
∑

x

〈
f,Q

x
2 v(x,x+1)

〉
HE

Q
x
2 v(x,x+1)

=
∑

x

(f(x)− f (x+ 1))Qxv(x,x+1),
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and
〈f,∆f〉HE

=
∑

x

|f(x)− f (x+ 1)|2Q2x.

The desired conclusion (7.7) now follows from Theorem 6.9 above and the character-
ization of ∆Fri (see e.g. [1, 10]).

Definition 7.7. Let G = (V,E, c) be a connected graph. The set of transition prob-
abilities (pxy) is said to be reversible if there exists c : V → R+ such that

c(x)pxy = c(y)pyx, (7.8)

and then
cxy := c(x)pxy (7.9)

is a system of conductance. Conversely, for a system of conductance (cxy) we set

c(x) :=
∑

y∼x
cxy (7.10)

and
pxy :=

cxy
c(x)

, (7.11)

and so (pxy) is a set of transition probabilities. See Figure 7.2 below.

x

y

y¢

cxy

cxy¢ x

y

y¢

px y

px y¢

cxy, y ∼ x transition probabilities

Fig. 7.2. Neighbors of x

Recall the graph Laplacian in (7.3) can be written as

(∆u)n = c (n) (un − p− (n)un−1 − p+ (n)un+1) for all n ∈ Z+, (7.12)

where
c (n) := an + an+1 (7.13)

and
p− (n) :=

an
c (n)

, p+ (n) :=
an+1

c (n)
(7.14)

are the left/right transition probabilities, as shown in Figure 7.3.
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p+p- p+p-

0 1 2 n - 1 n n + 1

Fig. 7.3. The transition probabilities p+, p−, in the case of constant transition probabilities,
i.e., p+ (n) = p+, and p− (n) = p− for all n ∈ Z+

In the case an = Qn, Q > 1, as in Lemma 7.4, we have

c (n) := Qn +Qn+1, (7.15)

and

p+ := p+ (n) =
Qn+1

Qn +Qn+1
=

Q

1 +Q
, (7.16)

p− := p− (n) =
Qn

Qn +Qn+1
=

1

1 +Q
. (7.17)

For all n ∈ Z+ ∪ {0}, set

(Pu)n := p−un−1 + p+un+1. (7.18)

Note (Pu)0 = u1. By (7.12), we have

∆ = c (1− P ) . (7.19)

In particular, p+ > 1
2 , i.e., a random walker has probability > 1

2 of moving to the
right. It follows that

travel time (n,∞)︸ ︷︷ ︸
= dist to ∞

<∞,

and so ∆ is not essentially selfadjoint, i.e., indices (1, 1).

Lemma 7.8. Let (V,E,∆(= ∆c)) be as above, where the conductance c is given by
cn−1,n = Qn, n ∈ Z+, Q > 1 (see Lemma 7.4). For all λ > 0, there exists fλ ∈ HE

satisfying ∆fλ = λfλ.

Proof. By (7.19), we have ∆fλ = λfλ ⇐⇒ Pfλ =
(
1− λ

c

)
fλ, i.e.,

1

1 +Q
fλ (n− 1) +

Q

1 +Q
fλ (n+ 1) =

(
1− λ

Qn−1 (1 +Q)

)
fλ (n)

and so

fλ (n+ 1) =

(
1 +Q

Q
− λ

Qn

)
fλ (n)− 1

Q
fλ (n− 1) . (7.20)

This corresponds to the following matrix equation:
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[
f (n+ 1)
f (n)

]
=

[ 1+Q
Q − λ

Qn − 1
Q

1 0

] [
f (n)

f (n− 1)

]

∼
[ 1+Q

Q − 1
Q

1 0

] [
f (n)

f (n− 1)

]
, as n→∞.

The eigenvalues of the coefficient matrix are given by

λ± ∼
1

2

(
1 +Q

Q
±
(
Q− 1

Q

))
=





1
1

Q

as n→∞.

That is, as n→∞,

fλ (n+ 1) ∼
(

1 +Q

Q

)
fλ (n)− 1

Q
fλ (n− 1) ,

i.e.,

fλ (n+ 1) ∼ 1

Q
fλ (n) ; (7.21)

and so the tail summation of ‖fλ‖2HE
is finite. (See the proof of Lemma 7.4.) We

conclude that fλ ∈HE .

Corollary 7.9. Let (V,E,∆) be as in the lemma. The Friedrichs extension ∆Fri has
continuous spectrum [0,∞).

Proof. Fix λ ≥ 0. We prove that if ∆fλ = λfλ, f ∈HE , then fλ /∈ dom(∆Fri).
Note for λ = 0, f0 is harmonic, and so f0 = k

(
1
Qn

)∞
n=0

for some constant k 6= 0.
See Remark 7.5. It follows from (7.7) that f0 /∈ dom(∆Fri).

The argument for λ > 0 is similar. Since as n → ∞, fλ (n) ∼ 1
Qn (eq. (7.21)), so

by (7.7) again, fλ /∈ dom(∆Fri).
However, if λ0 < λ1 in [0,∞) then

λ1∫

λ0

fλ (·) dλ ∈ dom(∆Fri) (7.22)

and so every fλ, λ ∈ [0,∞), is a generalized eigenfunction, i.e., the spectrum of ∆Fri

is purely continuous with Lebesgue measure, and multiplicity one.
The verification of (7.22) follows from eq. (7.20), i.e.,

fλ (n+ 1) =

(
1 +Q

Q
− λ

Qn

)
fλ (n)− 1

Q
fλ (n− 1) . (7.23)

Set

F[λ0,λ1] :=

λ1∫

λ0

fλ (·) dλ. (7.24)
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Then by (7.23) and (7.24),

F[λ0,λ1] (n+ 1) =
1 +Q

Q
F[λ0,λ1] (n)− 1

Qn

λ1∫

λ0

λfλ (n) dλ− 1

Q
F[λ0,λ1] (n− 1)

and
∫ λ1

λ0
λfλdλ is computed using integration by parts.

Remark 7.10 (Krein extension). Set

dom(∆Harm) := dom(∆) + Harmonic functions,

∆Harm := ∆∗
∣∣
dom(∆Harm)

.

Then ∆Harm ⊃ ∆ is a well-defined selfadjoint extension of ∆. It is semibounded, since
〈
ϕ+ h,∆Harm (ϕ+ h)

〉
HE

= 〈ϕ+ h,∆ϕ〉HE
= 〈ϕ,∆ϕ〉HE

≥ 0

for all ϕ ∈ dom(∆), and h harmonic. In fact ∆Harm is the Krein extension.

7.2. A REVERSIBLE WALK ON THE BINARY TREE
(THE BINOMIAL MODEL)

Consider the binary tree as a set V of vertices. To get a graph G = (V,E), take for
edges E the nearest neighbor lines as follows:

V := {o = φ, (x1x2 · · ·xn) , xi ∈ {0, 1} , 1 ≤ i ≤ n} , (7.25)

and

E (φ) = {0, 1} ,
E ((x1x2 · · ·xn)) =

{
(x1 · · ·xn−1)︸ ︷︷ ︸

=x∗

, (x0) , (x1)︸ ︷︷ ︸
extended words

}
, see Figure 7.4.

Φ

1

0

H11L

H10L

H00L

H01L

x*

x¢

x

Hx0L

Hx1L

Fig. 7.4. The binary tree model, three nearest neighbors
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Now fix transition probabilities at o = φ, and at the vertices V ′ = V \ {φ} as
follows: 




Prob (x→ (x0)) = p0,

Prob (x→ (x1)) = p1,

Prob (x→ (x∗)) = p−

(7.26)

with 0 < p0 < 1 (see Figure 7.4) such that p0 + p1 + p− = 1, see Figure 7.5.

xx*

Hx0L

Hx1L
p-

p1

p2

Fig. 7.5. Transition probabilities at a vertex x ∈ V ′. The reversible case with three nearest
neighbors

For x ∈ V ′, set
F0(x) = # {i | xi = 0} , F1(x) = # {i | xi = 1} , (7.27)

and

|x| := x1 + x2 + · · ·+ xn so that F0(x) + F1(x) = |x| for all x ∈ V ′. (7.28)

Further, define the function c : V → R+ as follows:

c(x) =
p
F0(x)
0 p

F1(x)
1

p
|x|
−

for all x ∈ V ′. (7.29)

Lemma 7.11. With the transition probabilities defined in (7.26), it follows that the
corresponding walk on V is reversible via the function c : V → R+ defined in (7.29),
i.e., we have the following identity for any edge (xy) in G = (V,E):

c(x)Prob (x→ y) = c(y)Prob (y → x) . (7.30)

Proof. This follows from a direct inspection of the cases (see also Figures 7.4 and 7.5).

For (xy) ∈ E, using (7.29)–(7.30), set cxy := c(x)Prob (x→ y), and

(∆u) (x) :=
∑

y∼x
cxy (u(x)− u(y)) . (7.31)

Corollary 7.12. If min (pi) > p−, then ∆ in (7.31) has deficiency indices (1, 1), i.e.,
the non-zero solution u to −u = ∆u is in HE; i.e., 0 < ‖u‖HE

<∞.

Proof. The analysis here is analogous to the one above in Example 7.1, and so we
omit the details here.

Remark 7.13. For literature on the binomial model and its applications, see for
example [7, 26,34].
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7.3. A 2D LATTICE

Let G = (V,E, c) the graph in Figure 7.6. Fix Q,Q > 1, and set the conductance as

an := cn−1,n = Qn,

an := cn−1,n = Q
n

for all n ∈ Z+. We get the set of transition probabilities as follows:




p+ = Q
1+Q , p+ = Q

1+Q
,

p− = 1
1+Q , p− = 1

1+Q
,

pd = vertical transitions.

0

1 2 3 n - 1 n n + 1
Qn

1 2 3 n - 1 n n + 1
Qn

Fig. 7.6. Conductance: cn−1,n = Qn and cn−1,n = Q
n

7.4. A PARSEVAL FRAME THAT IS NOT AN ONB IN HE

Let c01, c02, c12 be positive constants, and assign conductances on the three edges (see
Figure 7.7) in the triangle network.

0

1 2

c01 c02

c12

Fig. 7.7. The set {vxy : (xy) ∈ E} is not orthogonal

We show that wij =
√
eijvij , i < j, in the cyclic order is a Parseval frame but not

an ONB in HE .
Note the corresponding Laplacian ∆ (= ∆c) has the following matrix representa-

tion:

M :=



c (0) −c01 −c02

−c01 c (1) −c12

−c02 −c12 c (2)


 . (7.32)
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The dipoles
{
vxy : (xy) ∈ E(ori)

}
as 3-D vectors are the solutions to the equation

∆vxy = δx − δy.

Hence,

Mv01 =
[
1 −1 0

]tr
,

Mv02 =
[
1 0 −1

]tr
,

Mv12 =
[
0 1 −1

]tr
.

We check directly eq. (3.17) holds, and so
{
vxy : (xy) ∈ E(ori)

}
is not orthonormal.

For example, we have

v01 =

[
c12

c01c02 + c01c12 + c02c12
,− c02

c01c02 + c01c12 + c02c12
, 0

]tr

and

c01 (v01 (0)− v01 (1)) =
c01 (c12 + c02)

c01c02 + c01c12 + c02c12
< 1;

see (3.17). Hence the voltage drop across (01) is strictly smaller then the (01) resis-
tance, i.e.,

v01 (0)− v01 (1) <
1

c01
= Res(01).

In this example, the Parseval frame from Lemma 3.2 is

w01 =
√
c01v01 =

[ √
c01 c12

c01c02 + c01c12 + c02c12
,−

√
c01 c02

c01c02 + c01c12 + c02c12
, 0

]tr
,

w12 =
√
c12v12 =

[
0,

√
c12 c02

c01c02 + c01c12 + c02c12
,−

√
c12 c01

c01c02 + c01c12 + c02c12

]tr
,

w20 =
√
c20v20 =

[ −√c20 c12

c01c02 + c01c12 + c02c12
, 0,

√
c20 c01

c01c02 + c01c12 + c02c12

]tr
.

Remark 7.14. The dipole vxy is unique in HE as an equivalence class, not a
function on V . Note kerM = harmonic functions = constant (see (7.32)), and so
vxy + const = vxy in HE . Thus, the above frame vectors have non-unique representa-
tions as functions on V . Also see Remark 3.5.

Introduce the vector system of conductance as follows:

c̃1 = (c01, c01, c02) ,

c̃2 = (c02, c12, c12) ,

c̃0 = (c01, c02, c12) .
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We arrive at the following formula for the spectrum of the system (V,E, c,∆), where
(V,E) is the triangle in Figure 7.7.

λ1 = 0,

λ2 = trc̃0 −
√
‖c̃0‖2 − 〈c̃1, c̃2〉,

λ3 = trc̃0 +

√
‖c̃0‖2 − 〈c̃1, c̃2〉,

and so the spectral gap

λ3 − λ2 = 2

√
‖c̃0‖2 − 〈c̃1, c̃2〉

is a function of the coherence for c̃1 and c̃2.

8. OPEN PROBLEMS

Let G = (V,E, c) be a graph, with vertices V , edges E, and conductance c; V is count-
able infinite. The graph-Laplacian ∆ is essentially selfadjoint as an l2 (V )-operator,
but not as a HE-operator. It is known that ∆, as a HE-operator, has deficiency
indices (m,m), m > 0, when the conductance function c is of exponential growth.

1. Compare the deficiency indices of ∆ (in HE) for various cases: V = Zd,
d = 1, 2, 3, . . .; nearest neighbor. If d = 1 must the indices then be (m,m) with
m = 0 or 1? Are there examples with m = 2 in any of the classes of examples?

2. What is the spectral representation of the Friedrichs extension ∆Fri as a
HE-operator? Find the HE projection valued measure.

3. Find the spectrum of the transition operator P , considered as an operator in
l2(V, c̃). When is there point-spectrum? If so, what are the two top eigenvalues?
What is the connection between this spectrum (the spectrum of P ), and the spec-
trum of ∆Fri in HE , and of ∆ in l2(V )?

4. It is not known whether or not the transition operator P is bounded as an operator
of HE into itself.
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