Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the two-factorial vegetation experiment, the activity of dehydrogenase, phosphatase and urease was examined under the influence of the applied sludge-ash granulates produced from waste (sewage sludge, ash, sawdust). The research scheme included a control object, four types of fertilizer granulates, three doses and four dates of enzymatic activity indicators determination. The experiment was established in four replications. The size of granulate doses was determined on the basis of their nitrogen content. Dose I, II and III were: 0.24 g, 0.48 g and 0.72 g N•pot, respectively. The test plant was rapeseed of Larissa cultivar. The sludge-ash granulates were applied to the pots filled with the soil, in accordance with the experimental scheme. The soil samples for chemical analyses were taken from the top layer (0–20 cm) of spring rape cultivation four times: May 16, June 2, July 2 – dates from I to III, respectively, and August 2 after harvest – date IV. In average soil samples, the enzymatic activity of dehydrogenase, urease and phosphatase was determined. The research revealed that the highest increase in enzymatic dehydrogenase activity was obtained after applying granulate B, while phosphatases and urease after the application of granulate D. The smallest increase in dehydrogenase and phosphatase activity was obtained after the application of granulate C. The dose size of the applied granulates and date of uptake had a significant impact on the growth activity of the enzymes studied. The activity of dehydrogenase, phosphatases and urease, depending on the type of applied granulate, dose and date of soil sampling, was on average 7.28%, 30.5% and 7.94% higher, respectively, compared to the control. The correlation coefficient between dehydrogenase activity and urease and phosphatase was positively associated and amounted to r = 0.569 and r = 0.553, respectively. The applied fertilization with sludge-ash granulates A, B, C and D stimulated the increase in dehydrogenase, urease, and phosphatase activities in all fertilizer objects.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
137--144
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Department of Environmental Management, West Pomeranian University of Technology, ul. Słowackiego 17, 71-434 Szczecin, Poland
Bibliografia
- 1. Antonkiewicz J. 2009. Assessment of the natural use of bottom ash and municipal sewage sludge. Zesz. Nauk. UR w Krakowie, 454(331), 5–25. (in Polish)
- 2. Antonkiewicz J. 2010. Effect of sewage sludge and furnace waste on the content of selected elements in the sward of leguje-grass mixture. J of Elemetology, 15(3), 435–443. DOI: 10.5601/jelem.2010.15.3.435-443.
- 3. Antonkiewicz J., Kołodziej B., Bielińska E. 2017. Phytoextraction of hevy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita. Internacional Journal of Phytoremediation, 19(4), 309–318.
- 4. Antonkiewicz J., Kołodziej B., Bielińska E., GleńKarolczyk K. 2018. The use of macroelements from municipal sewage sludge by the multiflora rose and the Virginia fanpetals. Journal of Ecological Engineering 19(6), 1–13. DOI: 1012911/22998993/92889
- 5. Bielińska E.J., Baran S., Stankowski S. 2009. Assessment of suitability of fluidized ashes from hard coal for agricultural purposes. Inżynieria Rolnicza, 6(11), 7–14.
- 6. Bielińska E.J., Futa B., Bik-Mołodzińska M., Szewczuk C., Sugier D. 2013. The impact of fertilizing agents on the enzymatic activity of soils. Journal of Research and Applications in Agricultural Engineering, 58(3), 15–19.
- 7. Kalembasa D., Kuziemska B., Kalembasa S., 2014. Effect of liming and organic materials on the activity of urease and dehydrogenases in nickel contaminated soil. Inżynieria Ekologiczna, 36(2), 7–17 DOI: 10.12912/2081139X.01
- 8. Kołodziej B., Antonkiewicz J., Stachyra M., Bielińska E.J., Wiśniewski J., Luchowska K., Kwiatkowski C. 2015. Use of sewage sludge in bioenergy production. A case study on the effect on sorghum biomass produtcion. European Journal of Agronomy 69, 63–74.
- 9. Kołodziej B., Stachyra M., Antonkiewicz J., Bielińska E.J., Wiśniewski J. 2016. The effect of harvest frequency on fielding and quality of energy raw material of reed canary Grass grown on municipal sewage sludge. Biomass and Bioenergy, 85, 363–370.
- 10. Kovàćik P., Macàk M., Ducsay L., Halcćinovà M., Janćich M. 2011. Effect of ash-fly ash mixture application on soil fertility. J of Elementology, 16(2), 215–225.
- 11. Krzywy E., Ciubak J., Cydzik E., Możdżer E., Kucharska M. 2012. The use of municipal sewage sludge and ash from lignite for the production of fertilizer granules. Chemik, 11(66),1163–1168.
- 12. Krzywy-Gawrońska E., Krzywy E., Wołoszyk C., Iżewska A., Krzywy I. 2009. Effect of PRP Fix substances on changes in enzymatic activity of dehydrogenase, phosphatase and urease in composts from municipal sewage sludge. Zesz. Prob. Post. Nauk Rol., 537, 207–215.
- 13. Krzywy-Gawrońska E. 2012. Enzymatic activity of urease and degydrogenase in soil fertilised with GWDA compost with or without a PRP SOL addition. Polish Journal Environmental Studies, 21, 949–955.
- 14. Kulikowski L., Piętka P., Kiepurski J. 2019. Processing sewage sludge for mineral-organic fertilizer on the mobile platform. Ecological Engineering, 20(1), 38–44.
- 15. Kuziemska B. 2012. The activity of dehydrogenases in the soil contaminated with nickel. Ochrona Środowiska i Zasobów Naturalnych, 52, 103–112.
- 16. Lemanowicz J., Koper J. 2012. Phosphatase activity and phosphorus content in soil from selected crops fertilized with slurry. Proceedings of ECOpole, 6(1), 239–243.
- 17. Łabętowicz J., Stępień W., Kobiałak M., 2019. Innovative technologies for processing waste into fertilizers for agro-ecological utility. Ecological Engineering, 20(1),13–23.
- 18. Możdżer E., Jałoszyński S. 2019. Effect of Fertilizer Granulates on Ionic and Weight Relations Among Macronutrients in Spring Rape Seeds. Journal of Ecological Engineering, 20(5), 52–58.
- 19. Możdżer E., Jałoszyński S., Jarnuszewski G. 2020. The impact of sludge-ash granulates produced with the use of industrial waste on the yield and quality characteristics of test plants. Fresenius Environmental Bulletin, 29(7), 4886–4895.
- 20. Piotrowska A., Koper J. 2007. Effect of long-term organic and mineral fertilization on the activity of redox and hydrolytic enzymes in soil under winter wheat (Triticum aestivum L.). Zesz. Probl. Post. Nauk Rol., 520, 669–673.
- 21. Pogrzeba M., Rusinowski S., Krzyżak J. 2018. Macroelements and hevy metals content in energy cros cultivated on contaminated soil under different fertilization-case studies on autumn harvest. Envronmental Science and Pollution Research, 25(12), 12096–12106. DOI: 10.1007/s11356-018-1490-8
- 22. Renella G., Chaudri A.M. Fallon C.M. Landi L., Nanniperi P., Brookes P.C. 2007. Effects Cd, Zn or both on soil microbial biomass and activity in a clay loam soil. Biol. Fert. Soils, 43, 751–759.
- 23. Synamowicz B., Kalembasa S., Nidbała M., Toczko M., Skwarek K. 2018. Fertilization of pea (pisum sativuml.) with nitrogen and potassium and its effect on soil enzymatic activity. J of Elementology, 23(1), 57–67. DOI: 10.5601/jelem.2017.22.1.1395
- 24. Tabatabai M.A. 1994. Soil ensymes. Methodes of soil analis. Part 2. Microbiologicea and biochemical properties, 55(5), 775–833.
- 25. Telesiński A., Chruściel M., Szymczak J. 2011. Activity of o-diphenol oxidase in soil contaminated with cadmium, lead and copper. Aktywność oksydazy o-difenolowej w glebie zanieczyszczonej kadmem, ołowiem i miedzią. Ochr. Środ. Zas. Nat., 48, 216–222.
- 26. Thalman A. 1969. Zur metodik der Bestimmung der dehydrogenaseaktivitat in Bodenmittels Triphenylterazoliumchlorid. Landwirtsch. Forsch, 21, 249–258.
- 27. Trasar-Cepeda C., Leiros M.C., Gil-Sotres F. 2008. Hydrolytic enzyme activities In agricultura and forest soils. Some implications for thier use a indicators of soil quality. Soil Biol. Biochem, 40, 2016–2020.
- 28. Wierzbowska J., Sienkiewicz S., Krzebietke S., Sternik P. 2016. Sewage sludge as a skurce of nitrogen and phosphorus for Virginia fanpetals. Bulgarian Journal of Agriculture Science, 22(5), 722–727.
- 29. Wyszkowska J., Kucharski M., Kucharski J., Borowik A. 2009. Actity of dehydrogenases, catalase and urease in copper polluted soil. J of Elementology, 14(3), 605–617.
- 30. Wołoszyk C., Krzywy J., Joniak K., Krzywy E., Krzywy-Gawrońska E. 2006.Effect of composts and mineral fertilizers on the activity of dehydrogenase, acid and alkaline phosphatase and urease in soil before sowing and after harvesting spring rape. Zesz. Probl. Post. Nauk Rol, 512, 381–389.
- 31. Yang L., Li T., Li F., Lemcoff J.H., Cohen S. 2008. Fertizization regulates soil enzimatic activity and fertility dynamics in cucumber field. Sci. Hortic, 116, 21–30.
- 32. Zantua M., Bremner J.M. 1975. Comparsion of methods of assaying urease activity in soil. Soil Biol. Biochem, 7, 291–295.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60fbeb7e-2ef9-4cea-a3fa-54624067bbf4