PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Machine tool distortion estimation due to environmental thermal fluctuations – a focus on heat transfer coefficient

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermally induced errors have been approached in multiple ways due to the influence these have over the positional accuracy of a machine tool. Here, approaches regarding environmental thermal fluctuations surrounding a machine tool remain to be explored in detail. These fluctuations have been explored in terms of the heat transfer coefficient and thermal radiation of the machine shop walls, as well as in terms of seasonality and varying thermal gradients. This paper presents additional considerations regarding environmental temperature perturbations, as heat transfer coefficient fluctuations in the machine shop were thought to play a significant role in machine tool thermal deformation a broader term for these phenomena, environmental thermal fluctuations, was defined and evaluated. Specifically, an environmental thermal data survey of a machine shop was explored. This data was then applied to a NC milling machine and a CNC jig borer FEM analyses and compared to experimental data. FEM simulations were then used to demonstrate that convection regimes and heat transfer coefficient values at a machine shop have a significant influence over machining precision. Here, under maximum and minimum heat transfer coefficient values, the NC milling machine and CNC jig borer simulations results showed an error of cut difference up to 36.5 μm and 18.17 μm, respectively. In addition, as the importance of the heat transfer coefficient was highlighted, considerations regarding machine tool surface color were deemed relevant and were described.
Rocznik
Strony
17--30
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Nagaoka University of Technology, Graduate School of Mechanical Engineering, Niigata, Japan
  • Nagaoka University of Technology, Graduate School of Mechanical Engineering, Niigata, Japan
autor
  • Nagaoka University of Technology, Department of Mechanical Engineering, Niigata, Japan
autor
  • Nagaoka University of Technology, Center for Integrated Technology Support, Niigata, Japan
Bibliografia
  • [1] MAYR J., JEDRZEJEWSKI J., et al., 2012, Thermal issues in machine tools, CIRP Annals - Manufacturing Technology, 61, 771-791.
  • [2] BRYAN J., 1968, International status of thermal error research, Annals of the CIRP, 16/2, 203-215.
  • [3] MARES M., HOREJS O., et al., 2011, Compensation of Machine Tool Angular Thermal Errors Using Controlled Internal Heat Sources, Journal of Machine Engineering, 11/4, 78-90.
  • [4] JEDRZEJEWSKI J., KOWAL Z., et al., 2005, High-speed precise machine tools spindle units improving, Journal of Materials Processing Technology, 162/163, 615-621.
  • [5] TANABE I., YANAGI K., 1996, Dual Cooling Jacket around Spindle Bearings with Feed-Forward Temperature Control System to Decrease Thermal Deformation, JSME International Journal, Series C, 39/1, 149-155.
  • [6] WINIARSKI Z., KOWAL Z., et al, 2017, Precise Modeling of Machine Tool Drivers with Ball Screw Thermal Behavior, Journal of Machine Engineering, 17/1, 31-45.
  • [7] MIAN N., FLETCHER S., et al., 2011, Efficient thermal error prediction in a machine tool using finite element analysis, Measurement Science and Technology, 22/8, 1-10.
  • [8] ABUANIZA A., FLETCHER S., et al., 2016, Thermal Error Modelling of a CNC Machine Tool Feed Drive System using FEA Method, International Journal of Engineering Research & Technology, 5/03, 118-126.
  • [9] TANABE I., NISHIYAMA A., 2017, Research on control using thermal synchronism at wet cutting in machine tool (Control using inverse analysis of neural network), Transactions of the JSME, 83/851, 1-13, (in Japanese).
  • [10] SETO Y., SUZUMURA F., et al., 2014, Thermal Deformation Prediction in Machine Tools by Using Transfer Functions, The 3rd International Conference on Design Engineering and Science (ICDES 2014), 22-26.
  • [11] WU C., KUNG Y., 2003, Thermal analysis for the feed drive system of a CNC machine center, International Journal of Machine Tools & Manufacture, 43, 1521-1528.
  • [12] NEUGEBAUER R., IHLENFELDT S., et al., 2010, An extended procedure for convective boundary conditions on transient thermal simulations of machine tools, Production Engineering - Research and Development, 4/6, 641-646.
  • [13] NISHIWAKI N., HORI S., et al., 1987, Thermal Deformation of Machine Tools Caused by Temperature Variations in Machine Shop, Transactions of the JSME, Series C, 53/495, 2408-2413, (in Japanese).
  • [14] MIAN N., FLETCHER S., et al., Efficient estimation by FEA of machine tool distortion due to environmental temperature perturbations, Precision Engineering, 37, 372-379.
  • [15] MIAN N., FLETCHER S., et al., An efficient offline method for determining the thermally sensitive points of a machine tool structure, Proceedings of the 37th International Matador Conference, 4/3, 101-104.
  • [16] TANABE I., MIZUTANI J., et al., 1994, A Study on the Effect of Surface Color in Regard to Thermal Deformation of a Machine Tool, Transactions of the JSME, Series C, 60/580, 4361-4367, (in Japanese).
  • [17] TANABE I., LEE J., 1998, A Study on the Effect of Surface Color in Regard to Thermal Deformation of a Machine Tool (Experiment Using a Practical Machine and Investigation in Case of a Structure with Coating Box Elements), Transactions of the JSME, Series C, 64/620, 1456-1463, (in Japanese).
  • [18] OKUSHIMA K., KAKINO Y., et al., 1972, Thermal Deformation of Machine Tool (1st Report: Thermal Deformation of Column in Steady-state), Journal of the Japan Society of Precision Engineering, 38/3, 283-288, (in Japanese).
  • [19] OKUSHIMA K., KAKINO Y., et al., 1972, Study on the Thermal Deformations of Machine Tools (2nd Report: Unsteady-state Thermal Deformations Due to Inner Heat Sources), Journal of the Japan Society of Precision Engineering, 38/7, 565-560, (in Japanese).
  • [20] OKUSHIMA K., KAKINO Y., et al., 1972, Study on the Thermal Deformations of Machine Tools (3rd Report: Effects of the Circulation of Fluids), Journal of the Japan Society of Precision Engineering, 39/2, 230-236, (in Japanese).
  • [21] KAKINO Y., OKUSHIMA K., et al., 1972, Study on the Thermal Deformations of Machine Tools (4th Report: Thermal Deformations due to External Heat Sources), Journal of the Japan Society of Precision Engineering, 40/12, 1105-1110, (in Japanese).
  • [22] KATTO Y., 1981, Introduction to Heat Transfer, Yokendo Co. Ltd., Japan, (in Japanese).
  • [23] TANABE I., KURODA M., 1998, Influence in which an environment temperature, heat transfer coefficient and radiation give to a measurement accuracy, Proceedings of Fourth International Symposium on Measurement Technology and Intelligent Instruments (ISMTII’98), 126-131.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60fa75da-466a-418d-a7ae-a1b755e0de75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.