PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

GNSS/CORS-Based Technology for Real-Time Monitoring of Landslides on Waste Dump – A Case Study at the Deo Nai South Dump, Vietnam

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Monitorowanie osuwisk na zwałowiskach w czasie rzeczywistym w oparciu o technologię GNSS/CORS -studium przypadku na zwałowisku Deo Nai Południa, Vietnam
Języki publikacji
EN
Abstrakty
EN
Nowadays, there are many different methods for monitoring waste dump landslides based on GPS, total station, remote sensing, UAV, Lidar, etc. However, these technologies can only periodically monitor but cannot continuously monitor in real time. In recent years, GNSS CORS technology has been applied to continuously monitor real time waste dump landslides in open-pit mines to provide immediate or nearly-instant warning of waste dump landslides, which can timely prevent and minimize damages to property and human life. In the present work, the real time monitoring system of waste dump landslides monitoring based on GNSS CORS technology was designed and built. This real time monitoring system includes (1) the GNSS CORS station based on Leica technology, (2) the monitoring stations system, (3) the data collection, transmission and processing system based on Trimble technology and the warning system. This system allows continuous monitoring in real time and provides an instant warning if the landslide occurred. Moreover, it also has the advantage of being cheap, flexible and easy to install for monitoring stations. A simulation experiment results showed that our monitoring system operates stably and continuously 24/7 with a horizontal accuracy of ±3 mm and vertical accuracy of ±5 mm.
PL
Częste występujące ulewy mają katastrofalne skutki powodując osuwanie mas skalnych na zwałowisku. W wyniku tego następuje zniszczenie, zasypanie urządzeń, dróg dojazdowych itp. Obecnie istnieje wiele różnych metod monitorowania osuwisk na zwałowiskach w oparciu o GPS, tachimetr, teledetekcję, UAV, Lidar itp. Jednak technologie te mogą monitorować tylko okresowo, nie mogą monitorować w sposób ciągły w czasie rzeczywistym. W ostatnich latach, technologia GNSS CORS była stosowana do ciągłego monitorowania w czasie rzeczywistym osuwisk na zwałowiskach w kopalniach odkrywkowych, aby zapewnić ostrzeżenie natychmiastowe lub prawie natychmiastowe o osuwiskach, co może na czas zapobiec i zminimalizować szkody mienia i życia ludzi. W artykule, przedstawiono system monitoringu osuwisk w czasie rzeczywistym w oparciu o technologię GNSS/CORS. Ten system monitoringu w czasie rzeczywistym obejmuje (1) stację GNSS CORS opartą na technologii Leica, (2) system stacji monitorujących, (3) system zbierania, transmisji i przetwarzania danych oparty na technologii Trimble oraz system ostrzegawczy. System ten umożliwia ciągłe monitorowanie w czasie rzeczywistym i zapewnia natychmiastowe ostrzeżenie w przypadku wystąpienia osuwisk. Ponadto ma tę zaletę, że jest tani, elastyczny i łatwy w instalacji dla stacji monitorujących. Wyniki eksperymentu symulacyjnego wykazały, że nasz system monitorowania działa stabilnie i nieprzerwanie 24 godziny na dobę, 7 dni w tygodniu z dokładnością poziomą ± 3 mm i dokładnością pionową ± 5 mm.
Rocznik
Strony
181--191
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., zdj.
Twórcy
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
  • National University of Civil Engineering, 55 Giai Phong street, Hanoi, Vietnam
  • ThuyLoi University – Second campus, Ho Chi Minh City, Vietnam
Bibliografia
  • 1. Tao Zhigang, Zhu Chun, Wang Yong, Wang Jiamin, He Manchao, and Zhang Bo (2018). Research on Stability of an Open-Pit Mine Dump with Fiber Optic Monitoring. Open Access Volume 2018, Article ID 9631706, 20 pages
  • 2. Hepi Hapsari Handayani, Yuwono, Taufik M, 2015. Preliminary study of bridge deformation monitoring using GPS and CRP (case study: Suramadu Bridge). Procedia Environmental Sciences, 24, 266-276.
  • 3. Lianhuan Wei, Yun Zhang, Zhanguo Zhao, Xiaoyu Zhong, Shanjun Liu, Yachun Mao and Jiayu Li, 2018. Analysis of Mining Waste Dump Site Stability Based on Multiple Remote Sensing Technologies. Remote Sensing, doi:10.3390/rs10122025.
  • 4. Ustyna Adamczyk, Marek caŁa, Jerzy flisiak, Malwina Kolano, MichaŁ Kowalski (2013). Slope stability analysis of waste dump in sandstone open pit Osielec. Studia Geotechnica et Mechanica, Vol. XXXV, No. 1, 2013
  • 5. Zhiliu Wang, Bo Liu, Yanhui Han, Jian Wang, Biao Yao, Peng Zhang, 2019. Stability of inner dump slope and analytical solution based on circular failure: Illustrated with a case study. Computers and Geotechnics, Volume 117, 103241
  • 6. Paolo Budetta, Michele Nappi, Sergio Santoro, Giuseppe Scalese, 2020. DinSAR monitoring of the landslide activity affecting a stretch of motorway in the Campania region of Southern Italy. Transportation Research Procedia 45, 285–292
  • 7. Volodymyr Nikulishyn, Ihor Savchyn, Olexandr Lompas, Viktor Lozynskyi, 2020. Applying of geodetic methods for monitoring the effects of waste-slide at Lviv municipal solid waste landfill. Environmental Nanotechnology, Monitoring & Management 13, 100291.
  • 8. Kai Shi, Ming Xu, Haoxia Jin, Tong Qiao, XueYang, Ning Zheng, JianXu, Kim-Kwang Raymond Choo, 2017. A novel file carving algorithm for National Marine Electronics Association (NMEA) logs in GPS forensics. Digital Investigation, Volume 23, pp 11-21.
  • 9. Malet J-P, Maquaire O, Calais E, 2002. The use of Global Positioning System for the continuous monitoring of landslides. Application to the Super-Sauze earthflow (Alpes de-Haute-Provence, France). Geomorphology 43, 33–54.
  • 10. Malet, J.-P., van Asch, Th.W.J., Van Beek, R., Maquaire, O., 2005. Forecasting the behaviour of complex landslides with a spatially distributed hydrological model. Nat. Hazards, Earth Syst. Sci. 5, 71–85.
  • 11. Jaboyedoff M, Oppikofer, T., Abellan, A., Derron, M.H., Loye, A., Metzger, R., Pedrazzini, A., 2012. Use of LiDAR in landslide investigation/a review. Nat. Hazards 61 (1), 5–28.
  • 12. Travelletti J, Malet J-P, Delacourt C, 2014. Image-based correlation of laser scanning point cloud time series for landslide monitoring. Int. J. Appl. Earth Obs. Geoinf. 32, 1–18.
  • 13. L. Benoit, P. Briole, O.Martin, C. Thom, J.-P. Malet, P. Ulrich., 2015. Monitoring landslide displacements with the Geocube wireless network of low-cost GPS. Engineering Geology 195, 111–121.
  • 14. Takasu, T., Yasuda, A., 2008. Evaluation of RTK-GPS performance with low-cost single-frequency GPS receivers. International Symposium on GPS/GNSS 2008.
  • 15. Luu Van Thuc, Đo Ngoc Tuoc, Le Xuan Thu, 2014. Causes deformation of waste dump in open pit mine and recommend some solutions to ensure stability. Results of research and development of mining science and technology. Institute Of Mining Science And Technology, VietNam.
  • 16. Savvaidis, 2016. Existing Landslide Monitoring Systems and Techniques. Journal of Measurement, pages 242-258.
  • 17. Vu Van Khoa, Shigeru Takayama, 2018. Wireless sensor network in landslide monitoring system with remote data management. Journal of Measurement, pages 214-229.
  • 18. K. Georgieva, K. Smarsly, M. König and K. H. Law, 2015. An Autonomous Landslide Monitoring System Based on Wireless Sensor Networks. https://www.researchgate.net/publication/268438328.
  • 19. K. S. C. Kuang, Qinghao Cao, 2015. A Low-Cost, Wireless Chemiluminescence-Based Deformation Sensor for Soil Movement and Landslide Monitoring.
  • 20. Ruya Xiao, Xiufeng He, 2013. Real time landslide monitoring of Pubugou hydropower resettlement zone using continuous GPS. ttps://www.researchgate.net/publication/257633559.
  • 21. Serena Artese, Michele Perrelli, 2018. Monitoring a Landslide with High Accuracy by Total Station: A DTM-Based Model to Correct for the Atmospheric Effects. www.mdpi.com/journal/geosciences.
  • 22. Irwan Gumilar, Alif Fattah, Hasanuddin Z. Abidin, Vera Sadarviana, Nabila S. E. Putri, and Kristianto, 2017. Landslide monitoring using terrestrial laser scanner and robotic total station in Rancabali, West Java (Indonesia).
  • 23. Tommaso Carlàa, Veronica Tofania, Luca Lombardia, Federico Raspinia, Silvia Bianchinia, Davide Bertolob, Patrick Thuegazb, Nicola Casagli, 2019. Combination of GNSS, satellite InSAR, and GBInSAR remote sensing monitoring to improve the understanding of a large landslide in high alpine environment. Geomorphology, pages 62-75.
  • 24. Pham Cong Khai, Le Van Canh, Nguyen Quoc Long, Nguyen Viet Nghia, Pham Van Chung, Vo Ngoc Dung, Nguyen Gia Trong, Le Duc Tinh, Nguyen Viet Ha, Nguyen Van Sang, 2019. Research on technology application continous monitoring of displacement and deformation of works in area of Hanoi City. Final report of Science and Technology project of city level. Grant number 01C-04/08-2016-3. Hanoi Department of Science and Technology.
  • 25. Networked Transport of RTCM via Internet Protocol (Ntrip), Version 1.0. In: GDC (GNSS Data Center) [online]. Bundesamt für Kartographie und Geodäsie (BKG), 2004. [cit.26.05.2016]. Available from: http://igs.bkg.bund.de/root_ftp/NTRIP/documentation/ NtripDocumentation.pdf/.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60f5bb46-ddd9-4287-b598-4da184065fb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.