PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transmisja i przetwarzanie sygnałów optycznych o wysokich przepływnościach wykorzystująca półprzewodnikowe wzmacniacze optyczne

Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
W niniejszej pracy przedstawiono badania nad możliwością poszerzenia wykorzystania półprzewodnikowych wzmacniaczy optycznych SOA w systemach optotelekomunikacyjnych. Badania objęły zastosowania wzmacniaczy SOA zarówno do transmisji sygnałów, jak i całkowicie optycznego przetwarzania sygnałów. W ramach pracy naukowo-badawczej przebadano możliwość realizacji systemów DWDM o uproszczonej budowie i dużej pojemności transmisyjnej, wykorzystujących wzmacniacze SOA. Przebadano najważniejsze ograniczenia transmisji w oknie telekomunikacyjnym 1310 nm i określono zależności między pojemnością a zasięgiem dla badanej klasy systemów transmisyjnych. Zrealizowano i przebadano eksperymentalny system transmisyjny DWDM 8x40 Gbit/s i 8x54 Gbit/s wykorzystując SOA na pasmo 1310 nm. Przedstawiony system transmisyjny może być wykorzystany zarówno do połączeń 400 G i 1000 G Ethernet, jak i dla potrzeb centrów gromadzenia oraz przetwarzania informacji. W dalszej części pracy zaproponowano i przebadano innowacyjną metodę konwencji formatu modulacji OOK-QAM. Przedstawiono zasadę działania konwertera formatu modulacji OOK-QAM. Przedstawiono zasadę działania konwertera formatu modulacji OOK-QAM wykorzystującego konwertery długości fali. Następnie zweryfikowano możliwość generacji sygnałów 16-QAM w konwerterze wykorzystującym dwie równolegle połączone struktury SOA-MZI. Określono wrażliwość generowania sygnałów 160 Gbit/s 16-QAM na typowe zniekształcenia w transmisji światłowodowej oraz możliwość ich wykorzystania w systemach transmisyjnych o bardzo wysokiej pojemności. Przeprowadzone badania potwierdziły poprawną generację sygnału 16-QAM w proponowanym układzie konwertera formatu modulacji. Zaproponowany konwerter formatu modulacji może być wykorzystany do realizacji całkowicie optycznego styku sieci OOK i QAM oraz do generacji sygnałów o bardzo wysokich przepływnościach.
EN
The present work is dedicated to research on further expansion of semiconductor optical amplifier SOA applications in opto-telecommunication systems. The research covers transmission and all-optical signal processing applications. The feasibility to realize low-complexity high capacity DWDM transmission utilizing semiconductor optical amplifiers in the 1310 nm window is verified. Major transmission limitation in the 1310 nm window are identified, along with a presentation of countermeasures. The trade of between transmission capacity and distance is investigated. The 8x40 Gbit/s and 8x54 Gbit/s DWDM transmission system in the 1310 nm window utilizing semiconductor optical amplifiers was built and tested. The demonstrated system can be utilized in ultra-high speed 400 G and 1000 G Ethernet, as well as inter and intra center transmission. Next, a novel all-optical OOK-QAM modulation format conversion method has been presented. The principle of operation of the OOK-QAM modulation format converter based on the wavelength conversion is explained. Further feasibility of the 16-QAM signal generation in the proposed modulation format converter utilizing two parallel SOA-MZI is investigated including studies on the generated 160Gbit/s 16-QAM signal resilience to the typical fibre transmission impairments. The conducted wok has shown proper operation of the investigated OOK-QAM modulation format converter. The proposed converter can be applied at the OOK and QAM networks interface and to generate ultra-high bit rate signals.
Rocznik
Tom
Strony
3--142
Opis fizyczny
Bibliogr. 245 poz., rys., tab., wykr.
Twórcy
  • Wydział Elektroniki i Technik Informacyjnych
Bibliografia
  • 1. http://www.nobelprize.org/nobel_prizes/physics/laureates/2009/announcement.html.,The Nobel Prize in Physics 2009 - Prize Announcement", Nobelprize.org. 2 Jul 2012
  • 2. http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white paper_c11-481360_ns827 Networking_Solutions_White_Paper.html
  • 3. www.infonetics.com
  • 4. Zeidler G. i Schicetnz D., Use of laser amplifiers in glass fibre communication systems, Siemens Forch. U. Entwickl. Ber., vol. 2, 1973, no. 4, pp. 227-234.
  • 5. Personick S.D., Applications for quantum amplifiers in simple digital optical communication systems, Bell Syst. Tech. J., vol. 52, 1973, no. 1, pp. 117-133.
  • 6. Tamamoto Y., Characteristics of AlGaAs Fabry-Perot cavity type laser amplifiers, IEEE J. Quantum Electronics, vol. 16, 1980, no. 10, pp. 1047-1052.
  • 7. Mukai T., Yamamoto Y. i Kiura T., S/N and error rate performance in AlGaAs semiconductor laser preamplifier and linear repeater systems, IEEE Trans. Microwave Theory and Tech., vol. 30, 1982, no. 10, pp. 1548-1556.
  • 8. Simon J.C., GaInAsP semiconductor laser amplifiers for single-mode fibre communications, IEEE/OSA J. Lightwave Technology, vol. 5, 1987, no. 9, pp. 1286-1295.
  • 9. Zah C.E., Caneau C., Shokoohi F.K., Menocal S.G., Favire F., Reith L.A. i Lee T.P, 1.3μm GaInAsP near-trawelling-wave laser amplifiers made by combination of angled facets and antireflection coatings, Electronics Letters, vol. 24, 1988, no. 20, pp. 1275-1276.
  • 10. Olsson N.A., Kazarinov R.F., Nordlandm W.A., Henry C.H., Oberg M.G., White H.G., Garbisnki P.A. i Savage A., Polarization-independent optical amplifier with buried facets, Electronics Letters, vol. 25, 1989, no. 16, pp. 1048-1049.
  • 11. O'Mahony M.J., Semiconductor laser optical amplifiers for use in future fiber systems, IEEE/OSA Lightwave Technology, vol. 6, 1988, no. 4, pp. 531-544.
  • 12. Sun Y., Srivastava A.K., Banerjee S., Sulholf J.W., Pan R., Kantor K., Jopson R.M. i Chraplyvy A.R., Error-free transmission of 32x2.5 Gbit/s DWDM channels over 125 km using cascaded in-line semiconductor optical amplifiers, Electronics Ltters, vol. 35, 1999, no. 21, pp.1863-1865.
  • 13. Spiekman L.H., Wiesenfeld J.M., Gnauck A.H., Garrett L.D., Van Den Hoven G.N., Van Dongen T., Sander-Jochem M.J.H. i Binsma J.J.M., 8x10 Gb/s DWDM transmission over 240 km of standard fiber using a cascade of semiconductor optical amplifiers, IEEE Photonics Technology Letters, vol. 12, 2000, no. 8, pp. 1082-1084.
  • 14. Spiekman L.H., Wiesenfeld J.M., Gnauck A.H., Garrett L.D., Van Den Hoven G.N., Van Dongen T., Sander-Jochem M.J.H. i Binsma J.J.M., Transmission of 8 DWDM channels at 20 Gb/s over 160 km of standard fiber using a cascade of semiconductor optical amplifiers, IEEE Photonics Technology Letters, vol. 12, 2000, no. 6, pp. 717-719.
  • 15. Proietti R., D'Errico A., Giorgi L., Calabretta N., Contestabile G. i Ciaramella E., 16x10 Gb/s DPSK transmission over 140-km SSMF by using two common SOAs, IEEE Photonics Technology Letters, vol. 18, 2006, no. 15, pp. 1675-1677.
  • 16. Kim H.K., Chandrasekhar S., Srivastava A., Burrus C.A. i Buhl L., 10 Gbit/s based WDM signal transmission over 500 km of NZDSF using semiconductor optical amplifier as the in-line amplifier, Electronics Letters, vol. 37, 2001, no. 3, pp. 185-187.
  • 17. D'Errico A., Donzella V., Contestabile G., Betti S., Carrozzo V., Curti F., Guglielmucci M., Ciaramella E., Field-trial of SOA-based WDM-DPSK 8x10 Gbit/s system over 300 km with conventional amplification span, Electronics Letters, vol. 43, 2007, no. 7, pp. 404-405.
  • 18. Spiekman L.H., Gnauck A.H., Wiesenfeld J.M. i Garrett L.D., DWDM transmission of thirty two 10 Gbit/s channels through 160 km link using semiconductor optical amplifiers, Electronics Letters, vol. 36, 2000, no. 12, pp. 1046-1047.
  • 19. Kuindersma P.I., Cuijpers G.P.J.M., Jennen J.G.L., Reid J.J.E., Tiemeijer L.F., de Waardt H., Boot A.J., 10 Gbit/s RZ transmission at 1309 nm over 420 km using a chain of multiple quantum well semiconductor optical amplifier modules at 38 km intervals, Proceedings of European Conference on Optical Communications (ECOC) 1996, Oslo, Norway, paper TuD2.1, vol. 2, pp. 165-168.
  • 20. Jennen J.G.L., Smets R.C.J., de Waardt H., van den Hoven G.N. i Boot A.J., 4x10 Gbit/s NRZ transmission in the 1310 nm window over 80 km of standard single mode fibre using semiconductor optical amplifiers, Proceedings of European Conference on Optical Communications (ECOC) 1998, Madrid, Spain, vol. 1, pp. 235-236.
  • 21. de Waardt H., Tiemeijer L.F. i Verbeek B.H., 89 km 10 Gbit/s 1310 nm repeaterless transmission experiments using direct laser modulation and two SL-MQW laser preamplifiers with low polarization sensitivity, IEEE Photonics Technology Letters, vol. 6, 1994, no. 5, pp. 645-647.
  • 22. de Waardt H., Tiemeijer L.F. i Verbeek B. H., 2x10 Gbit/s WDM 1310-nm optical transmission over 63.5-km standard single-mode fiber using optical preamplifiers, IEEE Photonics Technology Letters, vol. 7, 1995, no. 1, pp. 104-107.
  • 23. K. Inoue, Crosstalk and its power penalty in multichannel transmission due to gain saturation in a semiconductor laser amplifier, IEEE/OSA J. Lightwave Technology, vol. 7, 1989, no. 7, pp. 1118-1124.
  • 24. Bray M.E. i Carroll J.E., Crosstalk reduction in semiconductor laser amplifiers, IEE Optoelectronics. IEE Proceedings J., vol. 139, 1992, no. 2, pp. 93-100.
  • 25. Doerr C.R., Joyner C.H., Zirngibl M., Stulz L.W. i Presby H.M., Elimination of signal distortion and crosstalk from carrier density changes in the shared semiconductor amplifier of multifrequency signal sources, IEEE Photonics Technology Letters, vol. 7, 1995, no. 10, pp. 1131-1133.
  • 26. Ho K.-P., Liaw S.-K. i Lin C., Reduction of semiconductor laser amplifier induced distortion and crosstalk for WDM systems using light injection, IEE Electronics Letters, vol. 32, 1996, no. 24, pp. 2210-2211.
  • 27. Srivastava A.K., Banerjee S., Eichenbaum B.R., Wolf C., Sun Y., Sulholf J.W. i Chraplyvy A.R., A polarization multiplexing technique to mitigate WDM crosstalk in SOAs, IEEE Photonics Technology Letters, vol. 12, 2000, no. 10, pp. 1415-1416
  • 28. Kim H.K. i Chandrasekhar S., Reduction of cross-gain modulation in the semiconductor optical amplifier by using wavelength modulated signal, IEEE Photonics Technology Letters, vol. 12, 2000, no. 10, pp. 1412-1414.
  • 29. Tangdiongga E., Crijns J.J.J., Spiekman L.H., van den Hoven G.N. i de Waardt H., Performance analysis of linear optical amplifiers in dynamic WDM systems, IEEE Photonics Technology Letters, vol. 14, 2002, no. 8, pp. 1196-1198.
  • 30. Francis D.A., Verma A.K., Spiekman L. i Crijns J., Linear optical amplifier and its applications in optical networks, Semiconductor Lasers and Optical Amplifiers for Lightwave Communication Systems, 9, Proc. SPIE 4871, 2002.
  • 31. Kani J.-I., Enabling Technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems, IEEE J. Selected Topics on Quantum Electronics, vol. 16, 2010, no. 5, pp. 1290-1297.
  • 32. Lee W.R., Park M.Y., Cho S.H., Lee J.H., Kim C.Y., Jeong G. i Kim B.W., Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers, IEEE Photonics Technology Letters, vol. 17, 2005, no. 11, pp. 2460-2462.
  • 33. Kang J.M. i Han S.K., A novel hybrid WOM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier, IEEE Photonics Technology Letters, vol. 18, 2006, no. 3, pp. 502-504.
  • 34. Reichmann K.C., Iannone P.P., Brinton C., Nakagawa J., Cusick T., Kimber M., Doerr C., Buhl L.L., Cappuzzo M., Chen E.Y., Gomez L., Johnson J., Kanan A.M., Lentz J., Chang Y.F., Palsdottir B., Tokle T. i Spiekman L., A symmetric-rate, extended-reach 40 Gb/s CWDM-TDMA PON with downstream and upstream SOA - Raman amplification, IEEE/OSA J. Lightwave Technology, vol. 30, 2012, no. 4, pp. 479-485.
  • 35. Stubkjær K., Technology for optical processing, Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2008, San Diego, USA, paper OMVI.
  • 36. Olsson B., Karlsson M. i Andrekson P., OTDM demultiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber, Proceedings of Optical Fiber Communications Conference (OFC) 2003, Anaheim, USA, pp. 198-200.
  • 37. Schubert C., Berger J., Diez S., Ehrke H.J., Ludwig R., Feiste U., Schmidt C., Weber H.G., Toptchiyski G., Randel S. i Petermann K., Comparison of interferometric all-optical switches for demultiplexing applications in high-speed OTDM systems, IEEE/OSA J. Lightwave Technology, vol. 20, 2002, no. 4, pp. 618-624
  • 38. Nakamura S., Ueno Y. i Tajima K., Error-free all-optical demultiplexing at 336 Gb/s with a hybrid-integrated symmetric-Mach-Zehnder switch, Proceedings of Optical Fiber Communications Conference (OFC) 2002, Anheim, USA, paper FD3-1-3.
  • 39. Schubert C., Diez S., Berger J., Ludwig R., Feiste U., Weber H.G., Toptchiyski G., Petermann K. i Krajinovic V., 160-Gb/s all-optical demultiplexing using a gain transparent ultrafast-nonlinear interferometer (GTUNI), IEEE Photonics Technology Letters, vol. 13, 2001, no. 5, pp. 475-477.
  • 40. Verdurmen E.J.M., Koonen A.M.J. i de Waardt H., Time domain add-drop multiplexing for RZ-DPSK OTDM signals, Optics Express, vol. 14, 2006, no. 12, pp. 5514-5120.
  • 41. Jansen S.L., Heid M., Spälter S., Meissner E., Weiske C.-J., Schopfl in A., Khoe G.D. i de Waardt H., Demultiplexing 160 Gbit/s OTDM signal to 40 Gbit/s by FWM in SOA, Electronics Letters, vol. 38, 2002, no. 17, pp. 978-980.
  • 42. Mulvad H.C.H., Galili M., Oxenløwe L.K, Hu H., Clausen A., Jensen J.B., Peucheret C. i Jeppesen P., Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel, Optics Express, vol. 18, 2010, no. 2, pp. 1438-1443.
  • 43. Vo T.D., Hu H., Gallii M., Palushani E., Xu J., Oxenløwe L.K., Madden S.J., Choi D. Y., Bulla D.A.P., Pelusi M.D., Schröder J., Luther-Davies B. i Eggleton B.J., Photonic chip based 1.28 Tbaud transmitter optimization and receiver OTDM demultiplexing, Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2010, San Diego, USA, paper PDPC5.
  • 44. Oxenløwe L.K. Tutorial: Terabit/second OTDM systems, IEEE Photonics Conference (PHO) 2011, Arlington, USA, pp. 650-651.
  • 45. Galili M., Mulvad H.C.H., Hu H., Oxenløwe L.K, Gomez A.F., Ware C., Erasme D., Clausen A. i Jeppesen P., 650 Gbit/s OTDM transmission over 80 km SSMF incorporating clock recovery, channel identification and demultiplexing in a polarisation insensitive receiver, Proceedings of Optical Fiber Communications Conference and National Fober Optic Engineers Conference (OFC/NFOC) 2010, San Diego, USA, paper OW03.
  • 46. Srivatsa A., de Waardt H., Hill M.T., Khoe G.D. i Dorren H.J.S., All-optical serial header processing based on two-pulse correlation, Electronics Letters, vol. 37, 2001, no. 4, pp. 234-235.
  • 47. Calabretta N., Liu Y., de Waardt H., Hill M.T., Khoe G.D. i Dorren H.J.S., Multiple output all-optical header processing technique based on two pulse correlation principle, Electronics Letters, vol. 37, no. 20, 2001, pp. 1238-1240.
  • 48. Hill M.T., All-optical flip-flop based on coupled laser diodes, Microwave and Optical Technology Letters, vol. 25, 2000, no. 3, pp. 157-159.
  • 49. Hill M.T., de Waardt H., Khoe G.D. i Dorren H.J.S., All-optical flip-flop based on coupled laser diodes, IEEE J. Quantum Electronics, vol. 37, 2001, no. 3, pp. 405-413.
  • 50. Hill M.T., Srivatsa A., Calabretta N., Liu Y., de Waardt H., Khoe G.O. i Dorren H.J.S., 1x2 optical packet switch using all-optical header processing, Electronics Letters, vol 37, 2001, no 12, pp. 774-775.
  • 51. Liu Y., Hill M.T., de Waardt H. i Dorren H.J.S., All-optical switching of packets for all-optical buffering purposes, Proceedings of European Conference on Optical Communications (ECOC) 2001, Amsterdam, The Netherlands, pp. 310-311.
  • 52. Hill M.T., de Waardt H., KhoeG.D. i Dorren H.J.S., Fast optical flip-flop by use of Mach-Zehnder interferometers, Microwave and Optical Technology Letters, vol. 31, 2001, no. 6, pp. 411-41S.
  • 53. Hill M.T., de Waardt H. i Dorren H.J.S., Fast all-optical flip-flop using coupled Mach-Zehnder interferometers, Proceedings of Conference on Laser and Electro Optics (CLEO) 2001, Baltimore, USA, pp. 188
  • 54. Liu Y., Hill M.T., Calabretto N., de Waardt H., Khoe G.D. i Dorren H.J.S., All-optical buffering in all-optical packet switched crossconnects, IEEE Photonics Technology Letters, vol. 14, 2002, no. 6, pp. 849-451.
  • 55. Smit M.K., Oei S., Karouta F., Nötzel R., Wolter J., Bente E., Leijtens X., van der Tol J., Hill M.T., Dorren H., Khoe G. D. i Binsma H., Photonic integrated circuits: where are the limits? Proceedings of Integrated Photonics Research and Applications, Nanophotonics for Information Systems (IPRA/NPIS) 2005, San Diego, USA, paper IWBI.
  • 56. Nagarajan R., Joyner C.H., Schneider R.P., Bostak J.S., Butrie T., Dentai A.G., Dominic V.G., Evans P.W., Kato M., Kauffman M., Lambert D.J.H., Mathis S.K., Mathur A., Miles R.H., Mitchell M.L., Missey M.J. Murthy S., Nilsson A C., Peters F.H , Pennypacker S.C., Pleumcekers J.L., Salvatore R.A., Schlenker R.K., Taylor R.B., Tsai H.-S., van Leeuwen M.F., Webjorn J., Ziari M., Perkins D., Singh J., Grubb S.G., Reffle M.S., Mehuys D.G., Kish F.A. i Welch D. F., Large scale photonic integrated circuits, IEEE J. Selected Topics Quantum Electronics, vol. 11, 2005, no. 1, pp. 50-65.
  • 57. Doerr C.R. , Photonic Integrated Circuits, Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2009, San Diego, USA, OFC Market Watch.
  • 58. Hatta T., Miyahara T., Miyazaki Y., Takagi K., Matsumoto K., Aoyagi T., Motoshima K., Mishina K., Maruta i Kitayama K.-I., Polarization-insensitive monolithic 40-Gbps SOA-MZI wavelength converter with narrow active waveguides, IEEE J. Selected Topics in Quantum Electronics, vol. 13, 2007, no. 1, pp. 32-39.
  • 59. Hill M.T., Dorren H.J.S., de Vries T.J., Leijtens X.J.M. den Besten J.H., Smalbrugge E., Oei Y.S., Khoe G.D. i Smit M.K., A fast lowpower optical memory based on coupled microring lasers, Nature, vol. 432. 2004, pp. 206-209.
  • 60. Hill M.T., Dorren H.J.S., Leijten, X.J.M., den Besten J.H., de Vries T., van Zantvoon J.H.C., Smit M.K., Coupled Mach-Zehnder interferometer memory element, Optics Letters, vol. 30, 2005, no. 13, pp. 1710-1712.
  • 61. Standard IEEE 802.3ba-2010, http:/standards.ieee.org/getieee802/download/802.3ba-2010.pdf
  • 62. Connelly M.J., Semiconductor optical amplifiers, Springer, 2002.
  • 63. Verbeck B.H. i Spiekman L.H., Semiconductor optical amplifiers for all transmission wavelength bands, Proceedings of Conference on Laser and Electro Optics (CLEO) 2000, San Francisco, USA, pp. 421.
  • 64. Matsuura M., Kishi N. i Miki T., All optical wavelength conversion with large wavelength hopping by utilizing multistage cascaded SOA-based wavelength converters, IEEE Photonics Technology Letters, vol. 18, 2006, no. 8, pp. 926-928.
  • 65. Runge P., Elschner R., Bunge C.-A., Petermann K., Schlak M., Brinker W., Sanorius B. i Schell M., Extinction ratio improvement in ultra-long semiconductor optical amplifiers - two wave competition for regenerative applications, Proceedings of International Conference on Photonics in Switching, 2008, Sapporo, Japan.
  • 66. Akiyama T., Sugawara M. i Arakawa Y., Quantum-dot semiconductor optical amplifiers, Proceedings of the IEEE, vol. 95, 2007, no. 9, pp. 1757-1766.
  • 67. Yasuoka N., Kawaguchi K., Ebe H., Akiyama T., Ekawa M., Tanaka S., Morito K., Sugawara M. i Arakawa Y., Demonstration of transverse magnetic dominant gain in quantum dot semiconductor optical amplifiers, Applied Physics Letters, vol. 92, 2008, no. 10, pp. 101108-1-101108-3.
  • 68. Yasuoka N., Kawaguchi K., Ebe H., Akiyama T., Ekawa M., Morito K., Sugawara M. i Arakawa Y., Quantum-dot semiconductor optical amplifiers with polarization-independent gains in 1.5-μm wavelength bands, IEEE Photonics Technology Letters, vol. 20, 2008, no. 23, pp. 1908-1910.
  • 69. Bauer B., Henry F. i Schimpe R., Gain stabilization of a semiconductor optical amplifier by distributed feedback, IEEE Photonics Technology Letters, vol. 6, 1994, no. 2, pp. 182-185.
  • 70. Tiemeijer L.F., Thijs P.J.A., van Dongen T., Binsma J.J.M., Jansen E.J. i van Helleputte H.R.J.R., Reduced intermodulation distortion in 1300 nm gain-clamped MQW laser amplifiers, IEEE Photonics Technology Letters, vol. 7, 1995, no. 3, pp. 284-286.
  • 71. Tiemeijer L.F., van den Hoven G N., Thijs P.J.A., van Dongen T., Binsma J.J.M., i Jansen E.J., 1310-nm DBR-type MQW gain-damped semiconductor optical amplifiers with AM-CATV-grade linearity, IEEE Photonics Technology Letters, vol. 8, 1996, no. 11, pp. 1453-1455.
  • 72. Hill M.T., de Waardt H., Khoe G. D., Dorren H.J.S., Short-pulse generation in interferometers employing semiconductor optical amplifiers, IEEE J. Quantum Electronics, vol. 39, 2003, no. 7, pp. 886-896.
  • 73. Verdurmen E.J.M., Characterization of an all-optical label swapping node, M.Sc. Thesis, 2012, TU/e, Eindhoven, The Netherlands.
  • 74. Toptchiyski G., Kindt S., Petermann K., Hilliger E., Diez S. i Weber H.G., Time-domain modeling of semiconductor optical amplifiers for OTDM applications, IEEE/OSA J. Lightwave Technology, vol. 17, 1999, no. 12, pp. 2577-2583.
  • 75. Kaiser G., Optical Fiber Communications, McGraw-Hill, 2010.
  • 76. Derickson D., Fiber optic test and measurement, Prentice Hall, 1997.
  • 77. Hill R. i O'Sullivan M., Fiber optic measurement techniques, Academic Press Inc. 2009
  • 78. Durhus T., Mikkelsen B., Joergensen C., Danielsen S.L. i Stubkjaer K.E., All-optical wavelength conversion by semiconductor optical amplifiers, IEEE/OSA J. Lightwave Technology, vol. 14, 1996, no. 6, pp. 942-954.
  • 79. Sharniha A., Topomondzo J. i Morel P., All-optical logic AND-NOR gate with three inputs based on crossgain modulation in a semiconductor optical amplifier, Optics Communications, vol. 265, 2006, no. 1, pp. 322-325.
  • 80. Villafranca A., Garces I., Cabezon M., Martinez J.J., Izquierdo D. i Pozo J., Multiple-bit all-optical logic based on cross-gain modulation in a semiconductor optical amplifier, Proceedings of International Conference on Transparent Optical Networks (ICTON) 2010, Münich, Germany
  • 81. Manning R J., Antonopoulos A., Le Roux R. i Kelly A.E., Experimental measurement o nonlinear polarization rotation in semiconductor optical amplifiers, Electronics Letters, vol. 37, 2001, no. 4, pp. 229-231.
  • 82. Patrick D M., Ellis A D., O'Davies D.A i Tatham M.C., Demultiplexing using polarisation rotation in a semiconductor laser amplifier, Electronics Letters, vol. 30, 1994, no. 4, pp 341-342.
  • 83. Stephens M.F.C., Asghari M., Penty R.V. i Whoite I.H., Demonstration or ultrafast all-optical wavelength conversion utilizing birefringence in semiconductor optical amplifier, IEEE Photonics Technology Letters, vol. 9, 1997, no. 4, pp. 449-451.
  • 84. Dorren H.J.S., Lenstra D., Liu Y., Hill M.T. i Khoe G.D., Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories, IEEE J. of Quantum Electronics, vol. 39, 2003, no. 1, pp. 141-148.
  • 85. Lee S.-L., Gong P.-M. i Yang C.-T., Performance enhancement on SOA-based four-wave-mixing wavelength conversion using an assisted beam, IEEE Photonics Technology Letters, vol. 14, 2002, no. 12, pp. 1713-1715.
  • 86. Buxens A., Poulsen H.N., Clausen A.T. i Jeppesen P., All-optical OTDM to-WDM signal-format translation and OTDM add-drop functionality using bidirectional four wave mixing in semiconductor optical amplifier, Electronics Letters, vol. 36, 2000, no. 2, pp. 156-158.
  • 87. K.Ch., Chan C.-K., Chen L.K. i Tong F., Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs, IEEE Photonics Technology Letters, vol. 16, 2004, no. 3, pp. 897-899.
  • 88. Chuang S.L., Physics of photonic devices, Wiley, 2009.
  • 89. www.kamelian.com
  • 90. www.covega.com
  • 91. www.alphion.com
  • 92. www.inphenix.com
  • 93. Headley C. i Agrawal G., Raman amplification in fiber optical communication systems, Academic Press, 2004.
  • 94. Cai J.-X., Recent advances in undersea long-haul transmission, Proceedings of Opto Electronics and Communications Conference (OECC) 2009, WPI.
  • 95. Adachi K., Shinoda K., Kitatani T., Fukamachi T., Matsuoka Y., Sugawara T. i Tsuji S., 25-Gb/s multi-channel 1.3-μm surface-emitting lens integrated DFB laser arrays, IEEE/OSA J. Lightwave Technology, vol. 29, 2011, no. 19, pp. 2899-2905.
  • 96. Fujisawa T., Kanazawa S., Ishii H., Nunoya N., Kawaguchi Y., Ohki A., Fujiwara N., Takahata K., Iga R., Kano F. i Oohashi H., 1.3-μm 4x25-Gb/s, monolithically integrated hght source for metro area 100-Gb/s Ethernet, IEEE Photonics Technology Letters, vol. 23, 2011, no. 6, pp. 356-358.
  • 97. www.finisar.com
  • 98. Fujisawa T., Takahnta K., Kobayashi W., Tadokoro T., Fujiwara N., Kanazawa S. i Kano F., 1.3 μm, 50 Gb/s electroabsorption modulators integrated with DFB laser for beyond 100 G parallel LAN applications, Electronics Letters, vol. 47, 2011, no. 12, pp. 705-710.
  • 99. Tang Y., Peters J.D. i Bowers J.E., Over 67 GHz bandwidth hybrid silicon electro absorption modulator with asymmetric segmented electrode for 1.3 μm transmission, Optics Express, vol. 20, 2012, no. 10, pp. 11529-11535.
  • 100. Nielsen T.N., Hansen P.B., Stentz A.J., Aquari V.M., Pedrazzani J.R., Abramov A.A. i Espindola R.P., 8x10 Gb/s 1.3μm unrepeatered transmission over a distance of 141 km with Raman post and pre-amplifiers, IEEE Photonics Technology Letters, vol. 10, 1998, no. 10, pp. 1492-1494.
  • 101. Stentz A.J., Nielsen T.N., Grubb S.G., Strasser T.A. i Pedrazzani J.R., Raman ring amplifier at 1.3 μm with analog-grade noise performance and an output power of 23 dBm, Proceedings of Optical Fiber Communications Conference (OFC) 1996, San Jose, USA, paper PD-16.
  • 102. Hansen P.B., Stentz A.J., Eskildsen L.E., Grubb S.G., Strasser T.A. i Pedrazzani J.R., High sensitivity 1.3-μm optically pre-amplified receiver using Raman amplification, Electronics Letters, vol. 32, 1996, no. 23, pp. 2164-2165.
  • 103. Yamashita I., Inoguchi M. i Seikai S., Experimental studies of optical Raman amplifiers for 1.3-μm wavelength band and its application to 20 Gbit/sx2 WDM transmission. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), vol. 143, 2003, no. 1, pp. 58-65.
  • 104. Makoto Y., Shimizu M., Kanamori T., Ohishi Y., Terunuma T., Oikawa K., Yoshinaga Y., Kikushima K., Miyamoto Y. i Sudo S., Low-noise and high-power Pr3+-doped fluoride fiber amplifier, IEEE Photonics Technology Letters, vol. 7, 1995, no. 8, pp. 869-871.
  • 105. Nishida Y., Yamada M., Kanamori T., Kobayashi K., Temmyo J., Sudo S. i Ohishi Y., Development of an efficient praseodymium-doped fiber amplifier, IEEE J. of Quantum Electronics, vol. 34, 1998, no. 8, pp. 1332-1339.
  • 106. Karasek M., Hotoleanu M., Voiculescu E. i Valles J.A., Gain stabilization in all-optical gain-clamped cascade of praseodymium-doped fluoride fiber amplifiers, Fiber and Integrated Optics, vol. 18, 1999, no. 2, pp. 105-117.
  • 107. www.innolume.com
  • 108. Nesset D. i Wright P., Raman extended GPON using 1240 nm semiconductor quantum-dot lasers, Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2010, San Diego, USA, paper OThW6.
  • 109. Jennen J., de Waardt H. i Acket G., Modeling and performance analysis of WDM transmission links employing semiconductor optical amplifiers, IEEE/OSA J. Lightwave Technology, vol. 19, 2001, no. 8, pp. 1116-1124.
  • 110. Agrawal G., Nonlinear fiber optics, Academic Press, 2012.
  • 111. Recommendations ITU-T G.652 Characteristics of a Single-Mode Optical Fiber and Cable, (1012009) http://www.itu.int/rec/T-REC-G.652-2009111
  • 112. http://www.ofsoptics.com/fiber/
  • 113. http://www.coming.com/opticalfiber/products/index.aspx
  • 114. http://global-sei.com/fttx/product_e/ofc/index.html
  • 115. Ghosh G., Endo M. i Wasalu T., Temperature-dependent sellmeier coefficients and chromatic dispersions for some optical fiber glasses, IEEE/OSA J. Lightwave Technology, vol. 12, 1994, no. 8, pp. 1338-1342.
  • 116. O'Mahoney M.J., Non-linear optical transmission systems, European Transaction on Telecommunications and Telated Technologies, vol. 4, 1993, no. 6, pp. 629-640.
  • 117. Siuzdak J., Systemy i sieci fotoniczne, WKŁ, Warszawa, 2009.
  • 118. Furst C., Elbers J.-P., Scheerer C., Glingener C., Limitations of dispersion-managed DWDM systems due to cross-phase modulation, Proceedings of IEEE Lasers and Electro-Optics Society (LEOS) Annual Meeting 2000, Rio Grande, USA, pp. 23-24.
  • 119. Shibata N., Braun R. i Waalls R., Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber, IEEE J. Quantum Electronics, vol. 23,1987, no. 7, pp. 1205-1210.
  • 120. Inoue K., Four-Wave Mixing in an optical fiber in the zero-dispersion wavelength region, IEEE/OSA J. Lightwave Technology, vol. 10, 1992, no. 11, pp. 1553-1561.
  • 121. Forghieri F., Tkach R.W. i Chraplyvy A.R., WDM system with unequally spaced channels, IEEE/OSA J. Lightwave Technology, vol. 13, 1995, no. 5, pp. 889-897.
  • 122. www.vpiphotonics.com. VPItransmissionMaker8.5
  • 123. www.ciphotonics.com
  • 124. www.shf.de
  • 125. Fujisawa T., Kanazawa S., Takahata K., Ohki A., Ueda Y., Iga R., Sanjo H., Yamanaka T., Kohtoku M. i Ishii H., Ultracompact 160-Gbit/s transminer optical subassembly based on 40-Gbit/sx4 monolithically integrated light source, Optics Express, vol. 21, 2012, no. 1, pp. 182-189.
  • 126. Tanaka T., Nishihara M., Takahara T., Li L., Tao Z. i Rasmussen J.C., Experimental investigation of 100-Gbps transmission over 80-km single mode fiber using discrete multitone modulation, Proc. SPIE 8646, Optical Metro Networks and Short-Haul Systems V, 86460J, 2012.
  • 127. Philips I.D., Gloag A., Moondie D.G., Doran N.J., Bennion I. i Ellis A.D., Drop and insert multiplexing with simultaneous clock recovery using an electroabsorption modulator, IEEE Photonics Technology Letters, vol. 10, 1998, no. 2, pp. 291-293.
  • 128. Rau L., Rangarajan S., Wang W. i Blumenthal D.J., All-optical add-drop of OTDM channel using an ultra-fast fiber based wavelength converter, Proceedings of Optical Fiber Communications Conference (OFC) 2002, Anaheim, USA, vol. 1, pp. 259-261.
  • 129. Fischer S., Dülk M., Gamper E., Vogt W., Hunziker W., Gini E., Melchior H., Buxens A., Poulsen H.N. i Clausen A.T., All-optical regenerative OTDM add-drop multiplexing at 40 Gbit/s using monolithic InP Mach-Zehnder interferometer, IEEE Photonics Technology Letters, vol. 12, 2000, no. 3, pp. 335-337.
  • 130. Schubert C., Schmidt-Langhorst C., Ferber S., Ludwig R. i Weber H.G., Error free all-optical add-drop multiplexing at 160 Gbit/s, Electronics Letters, vol. 39, 2003, no. 14, pp. 1074-1076.
  • 131. Schubert C., Schmidt-Langhorst C., Schulze K., Marembert V. i Weber H.G., Time division add-drop multiplexing up to 320 Gbit/s, Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2005, Anaheim, USA, paper OThN2.
  • 132. Hsu-Feng C., Bowers J.E. i Blumenthal D.J., Compact 160-Gb/s add-drop multiplexer with a 40-Gbit/s base rate using electroabsorption modulators, IEEE Photonics Technology Letters, vol. 16, 2004, no. 6, pp. 1564-1566.
  • 133. Mulvad H.C.H., Galili M., Oxenlowe L.K., Clausen A.T., Jeppesen P. i Gruner-Nielsen L., 640 Gbit/s Optical Time-Division Add-Drop Multiplexing in a Non-Linear Optical Loop Mirror, IEEE LEOS Winter Topical Meeting 2009, Insbruck, Austria, paper MC4.4.
  • 134. Bogoni A., Wu X., Nuccio S.R., Wang J., Willner A. E., 640 Gbit/s reconfigurable OTDM add-drop multiplexer, Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2011, San Diego, USA, paper OMK4.
  • 135. Xu C.Q., Okayama H. i Kawahara M., Wavelength conversion between the two silica windows 1.31 and 1.55 μm using difference frequency generation, Electronics Letters, vol. 30, 1994, no. 25, pp. 2168-2169.
  • 136. Barnsley P.E. i Fiddyment P.J., Wavelength conversion from 1.3 to 1.55 μm using split contact amplifiers, IEEE Photonics Technology Letters, vol. 3, 1995, no. 3, pp. 256-258.
  • 137. Maywar D.N., Nakano Y. i Agrawal G.P., 1.31-to-1.55 μm wavelength conversion by optically pumpig a distributed feedback amplifier, IEEE Photonics Technology Letters, vol. 12, 2000, no. 7, pp. 858-860.
  • 138. Lacey J.P.R., Pendock G.J. i Tucker R.S., All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier, IEEE Photonics Technology Letters, vol. 8, 1996, no. 7, pp. 885-887.
  • 139. Winzer P. i Essiambre R.-J. Advanced modulation formats for high-capacity optical transmission networks, IEEE/OSA J. Lightwave Technology, vol 24, 2006, no. 12, pp. 4711-4728.
  • 140. Charlet G., Progress in optical modulation formats for high-bit rate WDM transmissions, IEEE J. Selected Topics in Quantum Electronics, vol. 12, 2006, no. 4, pp. 469-483.
  • 141. Miyamoto Y. i Suzuki S., Advanced optical modulation and multiplexing technologies for high-capacity OTN based on 100 Gb/s channel and beyond, IEEE Communications Magazine, vol. 48, 2010, no. 3, pp. 65-72.
  • 142. http://www.huawei.com/en/solutions/broader-smarter/hw-104778100g.htm
  • 143. Alfiad M.S., Kuschnerov M., Jansen S.L., Wuth T., van den Borne D. i de Waardt H., 11x224-Gb/s POLMUX-RZ-16QAM transmission over 670 km of SSMF with 50-GHz channel spacing, IEEE Photonics Technology Letters, vol. 22, 2010, no. 15, pp. 1150-1152.
  • 144. Sano A., Masuda H., Kobayashi T., Fujiwara M., Horikoshi K., Yoshida E., Miyamoto Y., Matsui M., Mizoguchi M., Yamazaki H., Sakamaki Y. i Ishi H., Ultra-high capacity WDM transmission using spectrally efficient PDM 16-QAM modulation and C- and extended L-band wideband optical amplification, IEEE/OSA J. Lightwave Technology, vol. 29, 2011, no. 4, pp. 578-586.
  • 145. Winzer P.J., Gnauck A.H., Chandrasekhar S., Dravin S., Evangelist J. i Zhu B., Generation and 1200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator, Proceedings of European Conference on Optical Communications (ECOC) 2010, Turin, Italy.
  • 146. Richter T., Palushani E., Schmidt-Langhorst G., Nölle M., Ludwig R. i Schubert C., Single wavelenght channel 10.2 Tb/s TDM-data capacity using 16QAM and coherent detection, Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2011, Los Angeles, USA.
  • 147. Yamanaka S., Kobayashi T., Sano A., Masuda H., Yoshida E., Miyamoto Y., Nakagawa T., Nagatani M. i Nosaka H., 11x171 Gb/s PDM 16-QAM transmission over 1440 km with a spectral efficiency of 6.4 b/s/Hz using high-speed DAC. Proceedings of European Conference on Optical Communications (ECOC) 2010, Turin, Italy, paper We.8.C.1.
  • 148. Nakazawa M., Okamoto S., Omiya T., Kasai K. i Yoshida M., 256 QAM (64 Gbit/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz, Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2010, San Diego, USA. paper OMJ5.
  • 149. Doerr C.R., Winzer P.J., Zhang L., Buhl L. i Sauer N.J., Monohtic InP 16-QAM modulator, Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2008, San Diego, USA, paper PDP20.
  • 150. Doerr C.R., Christopher R., Zhang L., Winzer P.J., Gnauck A.H., 28-Gbaud lnP Square or Hexagonal 16-QAM Modulator, Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2011, Los Angeles, USA, paper OMU2.
  • 151. Ellermeyer T., Müllrich J., Rupeter J., Langenhagen H., Bielikk A. i Moiler M., DA and AD converters for 25 GS/s and above, Proceedings of IEEE LEOS Summer Topicals (LESOST) 2008, Acapulco, Mexico, paper TuC3.1.
  • 152. Mishina K., Maruta A., Mitani S., Miyahara T., Ishida K., Shimizu K., Hana T., Motoshima K. i Kitayama K.-I., NRZ-OOK-to-RZ-BPSK modulation-format conversion using SOA-MZI wavelength converter, IEEE/OSA J. Lightwave Technology, vol. 24, pp 2006, no. 10, pp. 3751-3758.
  • 153. Van C., Ye T i Su Y., All-optical regenerative NRZ-OOK-to-RZ-BPSK format conversion using silicon waveguides. Optics Letters, vol. 34, 2009, no. 1, pp. 58-60.
  • 154. Mishina K., Nissanka S., Maruta A., Milani S., Ishida K., Shimizu K., Hatta T i Kitayama K.-I., All-optical modulation format conversion from NRZ-OOK to RZ-QPSK using parallel SOA-MZI OOK/BPSK converters. Optics Express, vol. 15, 2007, no. 12, pp. 7774-7785.
  • 155. Dailey J.M., Webb R.P. i Manning R.J., All-Optical technique for modulation format conversion from on-off-keying to alternate-mark-inversion, Optics Express, vol. 18, 2010, no. 21, pp. 21871-21882.
  • 156. Yu J., Generation of 432 Gbit/s single carrier optical signal by format conversion, Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2011, Los Angeles, USA, paper OThN8.
  • 157. Mishina K., Kitagawa S. i Maruta A., All-optical modulation form at conversion from on-off-keying to multiple-level phase-shift-keying based on nonlineority in optical fiber. Optics Express, vol. 15, 2007, no. 13, pp. 8444-8453.
  • 158. Maruta A. i Kitagawa S., All-optical modulation format conversion from NRZ-OOK to RZ multilevel APSK based on fiber nonlinearity, IEEE/LEOS Winter Topicals Meeting (WTM) 2009, Insbruck, Austria, pp. 207-208.
  • 159. Honzatko P. i Karasek M., 10 and 20 Gb/s all-optical RZ to NRZ modulation format and wave length converter based on nonlinear optical loop mirror. Optics Communications, vol. 283, 2010, no. 10, pp. 2061-2065.
  • 160. Kwok C.H. i Lin C., Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum. IEEE J. Selected Topics in Quantum Electronics, vol. 12, 2006, no. 3, pp. 451-458
  • 161. Lu G.-W. i Miyazaki T., Experimental demonstration of RZ-8-APSK generation through optical amplitude and phase multiplexing, IEEE Photonics Technology Letters, vol. 20, 2008, no. 23, pp. 1995-1997.
  • 162. Yan C., Su Y., Yi L., Leng L., Tian X., Xu X., Tian Y., All-optical format conversion from NRZ to BPSK using a single saturated SOA, IEEE Photonics Technology Letters, vol. 18, 2006, no. 22, pp. 2368-2370.
  • 163. Astar W. i Carter G.M., 10 Gbit/s RZ-OOK to BPSK format conversion by cross-phase modulation to single semiconductor optical amplifier, Electronics Letters, vol. 42, 2006, no. 25, pp 1472-1474.
  • 164. Astar W. i Carter G M., 10 Gbit/s RZ-OOK to RZ-BPSK format conversion using SOA and synchronous pulse carver. Electronics Letters, vol. 44, 2008, no. 5, pp. 369-370.
  • 165. Gao Y., Shu C. i He S., Cascaded SOA configuration for NRZ-OOK to RZ-BPSK format conversion. Optics Communications, vol. 283, 2010, no. 23, pp. 4609-4613.
  • 166. Astar W., Aptratikul P., Cannon B.M., Mahmood T., Wathen J.J., Hryniewicz J. V., Kanakaraju S., Richardson C.J.K., Murphy T.E. i Caller G.M., Conversion of RZ-OOK to RZ-BPSK by XPM in a passive AIGaAs waveguide, IEEE Photonics Technology Letters, vol. 23, 2011, no. 19, pp. 1397-1399.
  • 167. Fresi F., Scaffardi M., Amaya N., Nejabati R., Simeonidou D. i Bogoni A., 40-Gb/s NRZ-to-RZ and OOK-to-BPSK format and wavelength conversion on a single SOA-MZI for gridless net working operations. IEEE Photonics Technology Letters, vol. 24, 2012, no. 4, pp. 279-281.
  • 168. Chen L.R., i Wang J., All-optical RZ-OOK to RZ-BPSK conversion with multicasting based on XPM in highly nonlinear fiber, Optics Communications, vol. 285, 2012, no. 16, pp. 3459-3465.
  • 169. Hwang S.-K., Chan S.-C., Lin S.-L., Chu C.-H. i Hung Y.-H., Conversion between optical ASK and optical FSK using nonlinear dynamics of semiconductor lasers, Proceedings of SPIE The International Society for Optical Engineering, pp. 8432, 2012.
  • 170. Yi A.-L., Yan L.-S., Luo B., Pan W., Ye J., Chen Z.Y. i Lee J.H., Simultaneous all-optical RZ-to-NRZ format conversion for two tributaries in PDM signal using a single section of highly nonlinear fiber, Optics Express, vol. 20, 2012, no. 9, pp. 9890-9896.
  • 171. Lu G.-W., Tipsuwannakul E., Miyazaki T., Lundström C., Karlsson M. i Andrekson. P.A., Format conversion of optical multilevel signals using FWM-based optical phase erasure, IEEE//OSA Journal of Lightwave Technology, vol. 29, 2011, no. 16, pp. 2460-2466.
  • 172. Huang G., Miyoshi Y., Yoshida Y., Maruta A. i Kitayama K.-I., All-optical OOK to 16QAM modulation format conversion employing nonlinear optical fiber loop mirror. Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2011, Los Angeles, USA, paper OThN6.
  • 173. Huang G., Miyoshi Y., Maruta A. i Kitayama K.-I., All-optical technique for modulation format conversion from NRZ-OOK to RZ-16QAM employing nonlinear optical loop miror with 1:2 coupler, Optics Express, vol. 20, 2012, no. 24, pp. 27311-27321.
  • 174. Huang G., Miyoshi Y., Maruta A., Yoshida Y. i Kitayama K.-I., All-optical OOK to 16QAM modulation format conversion employing nonlinear optical loop mirror, IEEE/OSA J. Lightwave Technology, vol. 30, 2012, no. 9, pp. 1342-1350.
  • 175. Huang G., Miyoshi Y., Yoshida Y., Maruta A. i Kitayama K.-I., All-optical OOK to 16QAM modulation conversion based on nonlinear optical loop mirror with 1:2 coupler, Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2011, Los Angeles, USA, paper OTh4H.
  • 176. Mishina K., Kono T., Maruta A., Kitayama K.-I., All-optical OOK to-16QAM format conversion by using SOA-MZI Wavelength Converters, Optoelectronics and Communications Conference (OECC), 2012, Busan, Korea, pp. 337-338.
  • 177. Hisano D., Maruta A. i Kitayama K.-I., All-optical modulation format conversion from 4-channels NRZ-OOK to RZ-16QAM using SOA-MZI wavelength converters, IEEE Photonics Conference (IPC), 2012, San Francisco, USA, pp. 106-107.
  • 178. Shimizu K., Horiguchi T. i Koyamada Y., Technique for translating light-wave frequency by using an optical ring circuit containing a frequency shifter, Optics Letters, vol. 17, 1992, no. 18, pp. 1307-1309.
  • 179. Glanceetal B., High perfonnance optical wavelength shifter, Electronics Letters, vol. 28, 1992, no. 18, pp. 1714-1715.
  • 180. Toba I., Wavelength conversion experiment using fiber four-wave mixing. IEEE Photonics Technology Letters, vol. 4, 1992, no. 1, pp. 69-72.
  • 181. Kelly A. E., Ellis A.D., Nessel D., Kashyap R. i Moodie D.O., 100 Gbit/s wavelength conversion using FWM in a MQW semiconductor optical amplifier, Electronics Letters, vol. 34, 1998, no. 20, pp. 1955-1957.
  • 182. Rauschenbach K.A., Hall K.L., Livas J.C. i Raybon G., All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror, IEEE PhotonicsTechnology Letters, vol. 6, 1994, no. 9, pp. 1130-1132.
  • 183. Xu C.Q., Okayama H. i Kawahara M., 1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide, Applied Physics Letters, vol. 63, 1993, no. 26, pp. 3559-3561.
  • 184. Chou M.H., Brener 1., Fejer M.M., Chaban E. E. i Christman S.B., 1.5 μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides. IEEE Photonics Technology Letters, vol. 11, 1999, no. 6, pp. 653-655.
  • 185. Pelusi M.D., Ta'eed V.G., Lamont M.R.E. i Eggleton BJ. Optical signal processing in highly nonlinear chalcogenide planar waveguides, IEEE/LEOS Winter Topical Meeting, 2008, Sorrento, Italy, pp. 86-87.
  • 186. Boyraz O., Koonalh P., Raghunathan V. i Jalah B., All-optical switching via XPM in silicon waveguides. Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS), 2004, Rio Grand, USA, vol. 2, pp. 973-974.
  • 187. Hu H., Ji H., Galili M., Pu M., Mulvad H. C. H., Oxenlowe L.K., Yvind K., Hvam J.M i Jeppesen P., 320 Gb/s phase-transparent wavelength conversion in a silicon nanowire, Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2011, Los Angeles, USA, paper OWG6.
  • 188. Galili M., Mulvad H.C.H., Oxenlowe L.K., Ji H., Clausen A.T. i Jeppesen P., 640 Gbit/s wavelength conversion. Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2008. San Diego. USA. paper OTuD4.
  • 189. Hu H., Palushani E., Galili M., Mulvad H.C H., Clausen A., Oxenlowe L.K. i Jeppesen P. 640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion. Optics Express, vol. 18, 2010, no. 10, pp. 9961-9966.
  • 190. Liu Y., Tangdiongga E., LiZ., de Waardt H. Koonen A.M.J., Khoe G.D., Shu X., Bennion I. i Dorren H.J.S., Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier, IEEE/OSA J. Lightwave Technology, vol. 25, 2007, no. 1, pp. 103-108.
  • 191. Danielsen S.L., Joergensen C., Vaa M., Mikkelsen B., Stubkjaer K.E., Doussiere P., Pornmerau F., Goldstein L., Ngo R. i Goix M., Bit error rate assessment of 40 Gbit/s all-opticalI polarisation independent wavelength converter, Electronics Letters. Vol. 32, 1996, no 18, pp. 1688-1690.
  • 192. Ellis A.D., Kelly A.E., Nesset D., Pitcher D., Moodie D G. i Kashyap R., Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor amplifier. Electronics Letters, vol. 34, 1998, no. 20, pp. 1955-1956.
  • 193. Perino J.S., Wiesenfield J.M. i Glance B , Fibre transmission of 10 Gbit/s signals following wavelength conversion using a travelling.wave semiconductor optical amplifier. Electronics Letters, vol. 30, 1994, no. 3, pp. 256-258.
  • 194. Rauschenbach K.A., Hall K.L., Livas J.C. i Raybon G., All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror. IEEE Photonics Technology Letters, vol. 6, 1994, no. 9, pp. 1130-1132.
  • 195. http://www.ciphotonics.com/products/rgen/or-2r2-100-c-fca/
  • 196. Kelly A.E., Ellis A.D., Nessel D., Kashyap R. i Moodie D.O., 100 Gbit/s wavelength conversion using FWM in a MQW semiconductor optical amplifier, Electronics Letters, vol. 34, 1998, no. 20, pp 1955-1957.
  • 197. Jopson R.M. i Tench R.E., Polarization-independent phase conjugation of lightwave signals, Electronics Letters, vol. 29, 1993, no. 25, pp. 2216-2217.
  • 198. R. Schnabel. Hilbk U., Hennes T., Meissner P., Helmolt C., Magari K., Raub F., Pieper W., Westphal F.J., Ludwig R., Kuller L. i Weber H.G., Polarization in sensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier, IEEE Photonics Technology Letters, vol. 6, 1994, no. 1, pp. 56.-58.
  • 199. Leuthold J., Moller L., Jaques J., Cabot S., Zhang L., Bernasconi P., Cappuzzo M., Gomez L., Laskowski E., Chen E., Wong-Foy A. i Griffin A., 160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties, Electronics Letters, vol. 40, 2004, no. 9, pp. 554-555.
  • 200. Dorren H.JS., Yang X., Mishra A.K., Li Z., Ju H., de Waardt H., Khoe G.-D. Simoyarna T,. Ishikawa H., Kawashima H. i Hasama T., All-optical logic based on ultra fast gain and index dynamics in a semiconductor optical amplifier, IEEE J. Selected Topics in Quantum Electronics, vol. 10, 2004, no. 5, pp. 1079-1092.
  • 201. Runge P., Elschner R. i Petermann K., Time-domain modeling of ultra long semiconductor optical amplifiers, IEEE J. Quantum Electronics, vol. 46, 2010, no. 4, pp. 484-491.
  • 202. Leuthold J., Bonk R., Vallaitis T., Marculescu A., Freude W., Meuer C., Bimberg D., Brenot R., Lelarge F. i Duan G.-H., Linear and nonlinear semiconductor optical amplifiers, Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2010, San Diego, USA, paper OThl3.
  • 203. El Aziz A., Ng W.P., Ghassemlooy Z., Aly M.H., Ngah R. i Chiang M.F., Characterization of the semiconductor optical amplifier for amplification and photonic switching employing the segmentation model, International Conference on Transparent Optical Networks Mediterranean Winter (lCTON-MW), 2008, Marrakesh, Morocco.
  • 204. Kikuchi K., Digital coherent optical communication systems: Fundamentals and future prospects, IEICE Electronics Express, vol. 8, 2011, no. 20, pp. 1642-1662.
  • 205. Khurgin J.B., Slow light in various media; a tutorial, Advances in Optics and Photonics, vol. 2, 2010, no. 3, pp. 287-318.
  • 206. http://www.generalphotonics.com/productoffline.aspx?dept=10&cp, 66
  • 207. http://www.cisco.com/en/US/prod/collateral/routers/ps5763/Cisco_ lPoDWDM_bro_ns573_Networking_Solutions_Brochure.html
  • 208. Czytak P., Mazurek P. i Turkiewicz J.P., Generation and reception of up to 28 Gbit/s optical signals with limited-bandwidth components, Photonics Letters of Poland. vol. 4, 2012, no. 4, pp. 125-127.
  • 209. Turkiewicz J.P. i de Waardt H., Low-Complexity up to 400 Gbit/s transmission in the 1310 nm wavelength domain, IEEE Photonics Technology Letters, vol. 24, 2012, no. 11, pp. 942-944.
  • 210. Turkiewicz J.P., Cost-effective nx25 Gbit/s DWDM Transmission in the 1310 nm Wavelength Domain, Optical Fiber Technology, vol. 17, 2011, no. 3, pp. 179-184.
  • 211. Turkiewicz J.P., Cost-effective all-semiconductor 4x40 Gbit/s transmission in the 1310 nm wavelength domain, Microwave and Optical Technology Letters, vol. 53, 2011, no. 7, pp. 1579-1582.
  • 212. Turkiewicz J.P., Techno-economical studies on the next generation Ethernet transmission in the 1310 nm wavelength domain, Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, vol. LXXX, 2011, no. 8-9, pp. 1308-1311.
  • 213. Turkiewicz J.P., Analysis of the SSMF zero-dispersion wavelength location and its influence on high capacity 1310 nm transmission, Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2013, Anaheim, USA, paper JW2A.06.
  • 214. Turkiewicz J.P. i de Waardt H., Low complexity and high capacity transmission in the 1310 nm transmission window, Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2012, Los Angeles, USA, paper NTu1F.5.
  • 215. Turkiewicz J.P., Hill M.T., Khoe G.D. i de Waardt H., Cost-effective transmission concept for LAN/MAN/SAN applications, Proceedings of European Conference on Optical Communications (ECOC) 2005, Glasgow, Scotland, paper Th1.4.2.
  • 216. Turkiewicz J.P., Tangdiongga E. i de Waardt H., High capacity WDM transmission in the 1310 nm wavelength domain for the RET rNA network purposes, Proceedings of Symposium IEEE/LEOS Benelux Chapter, 2002, Vrije Universiteit Amsterdam, pp. 270-273.
  • 217. Turkiewicz J.P., Konnen A.M.J., Khoe G.D. i de Waardt H., Do we need 1310 nm transmission in modern networks? Proceedings of European Conference on Optical Communications (ECOC) 2006, Cannes. France, paper We3P.153.
  • 218. http://www.ieee802.org/3/hssg/public/apr07/cole_01_0407.pdf
  • 219. Turkiewicz J.P., Tangdiongga E., Rohde H., Schairer W., Lehmann G., Khoe G.D. i de Waardt H., Simultaneous high speed OTDM add-drop multiplexing using GT-UNI switch, Electronics Letters, vol. 39, 2003, no. 10, pp. 795-796.
  • 220. Turkiewicz J.P., Tangdiongga E., Khoe G.D. i de Waardt H., Clock recovery and demultiplexing performance of 160-Gb/s OTDM field experiments, IEEE Photonics Technology Letters, vol. 16, 2004, no. 6, pp. 1555-1557.
  • 221. Turkiewicz J.P., Tangdiongga E., Lehmann G., Rohde H., Schairer W., Zhou Y.R., Sikora E.S.R., Lord A., Payne D. B., G.-D Khoe i de Waardt H., 160 Gb/s OTDM networking using deployed fiber. IEEE/OSA J. Lightwave Technology, vol. 2005, no. 1, pp. 225-235.
  • 222. Turkiewicz J.P., Lord A., Payne D., Tangdionggu E., Khoe G.D., de Waardt H., Schairer W., Rohde H., Lehmann G., Sikora E.S.R. i Zhou Y.R., Field trial of 160 Gbit/s OTDM add/drop node in a link of 275 km deployed fiber, Proceedings of Optical Fiber Communications Conference (OFC) 2004. Los Angeles, USA, paper PDP1.
  • 223. Turkiewicz J.P., Rohde H., Schairer W., Lehmann G., Tangdiongga E., Khoe G D. i de Waardt H., All-optical OTDM add-drop node at 16x10 Gbit/s in between two fibre links of 150 km. Proceedings of European Conference on Optical Communications (ECOC) 2003, Rimini, Italy, paper TH4.4.5.
  • 224. Turkiewicz J.P., Khoe G.D. i de Waardt H., All-optical 1310 nm to 1550 nm wavelength conversion by utilizing nonlinear polarisation in a semiconductor optical amplifier. Electronics Letters, vol. 41, 2005, no. 1, pp. 29-30.
  • 225. Turkiewicz J.P., Khoe G.D. i de Waardt H., All-optical 1310 nm WDM to 1550 nm OTDM transmultiplexing, Electronics Letters, vol. 41, 2005, no. 10, pp. 605-607.
  • 226. Turkiewicz J.P., All-optical OOK-to-QAM Modulation Format Conversion Utilizing Parallel SOA-MZI Wavelength Converters, Microwave and Optical Technology Letters, vol. 54, 2012, no. 10, pp. 2429-2433.
  • 227. Turkiewicz J.P., Applications of wavelength conversion to all-optical QAM signal generation, Proceedings of SPIE - The International Society for Optical Engineering, vol. 8010, 2011, Article no. 801008.
  • 228. Rodes R., Więckowski M., Thang T.P., Jensen J., Turkiewicz J.P., Siuzdak J. i Tafur Monroy I., Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON. Optics Express. vol. 27, 2011, no 19, pp. 26551-26556.
  • 229. Więckowski M., Jensen J., Monroy T.l., Siuzdak J. i Turkiewicz J.P., 300 Mbps transmission with 4.6 bit/s/Hz spectral efficiency over 50 m PMMA POF link using RC-LED and multi-level carrier less amplitude phase modulation, Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2011, Los Angeles, USA, paper NTuB8.
  • 230. Pincemin E., Boudrioua N., Turkiewicz J.P. i Guillossou T., 40 Gbps WDM transmission performance comparison between legacy and ultra low loss G.652 Fibres, IEE/!OSA J. Lightwave Technology, vol. 29, 2011, no. 23, pp. 3587-3598.
  • 231. Turkiewicz J.P., Równoległa transmisja sygnałów 40 Gbit/s PońMux QPSK i 10 Gbit/s OOK w systemach ze zwielokrotnieniem DWDM. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, vol. LXXVIII, 2009, no. 8-9, pp. 1603-1610.
  • 232. Turkiewicz J.P., Systemy światłowodowe oparte o ROADM, Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, vol. LXXIX, 2010, no. 8-9, pp. 864-872.
  • 233. Kościelska A. i Turkiewicz J.P., Zastosowanie cyfrowego przetwarzania sygnałów w optycznych systemach z zaawansowanymi formatami modulacji, Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, vol. LXXIX, 2010, no. 5, pp. 187-192.
  • 234. Turkiewicz J. P. i Leszczyc-Radolinski M., Rozwój szerokopasmowych sieci dostępowych. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, vol. LXXIX, 2010, no. 5, pp. 184-186.
  • 235. Więckowski M., Turkiewicz J.P., Przegląd technik pasywnych sieci optycznych. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne vol. LXXIX, 2010, no. 8-9, pp. 873-882.
  • 236. Szuksztal T., Turkiewicz J.P. Analiza budowy i rozwoju soeci dostępowej dla calego obszaru Polski w ujęciu minimalizacji kosztów kapitałowych i operacyjnych, Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, vol. LXXVIII, 2009, no. 8-9, pp. 911-920.
  • 237. Witkowski M., Osadchiy A., Turklewicz J.P. i Tafur Monroy I., Performance assessment of flexible time-wavelength routing for a self-aggregating transparent metro-access interface. Proceedings of European Conference on Optical Communications (ECOC) 2009, Vienna, Austria, paper P6. 16.
  • 238. Turkiewicz J.P. i D. Zawadzki. Intelligent Interface for Accessing the Optical Network Database. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne. vol. LXXXI, 2012, no. 8-9, pp. 913-922.
  • 239. Hill M.T., Oei Y.-S., Smalbrugge B., Zhu Y., de Vries T., van Veldhoven P.J., van Otten F.W.M., Eijkemans T.J., Turkiewicz J.P., de Waardt H., Geluk E.J., Kwon S.H., Lee Y.H., Notzel R. i Smit M.K., Lasing in metallic-coated nanocavities. Nature Photonics 1, 2007, pp. 589-594.
  • 240. Turkiewicz J.P. i Kościelska A., Quality estimation of the optical n-QAM signals utilizing the eye opening penalty, Microwave and Optical Technology Letters, vol. 54, 2012, no. 3, pp. 564-569.
  • 241. Turkiewicz J.P. i Kościelska A., Application of eye opening penalty to estimate quality of n-QAM high speed signals in optical communication, The 2011 International Conference on Network Communication and Computer (ICNCC) 2011. New Delhi, India, pp. 470-473.
  • 242. Turkiewicz J.P., Tangdiongga E., Khoe G.D. i de Waardt H., All-semiconductor 1310-nm 90 Gbit/s WDM transmission for LAN/MAN applications. Proceedings of European Conference on Optical Communications (ECOC) 2002, Copenhagen, Denmark, paper 11.5.2.
  • 243. Turkiewicz J.P., Vegas Olmos J.J., Khoe G. D. i de Waardt H., Performance assessment of 1310 to 1550 nm wavelength conversion, Proceedings of European Conference on Optical Communications (ECOC) 2005, Glasgow, Scotland, paper We1.5.3.
  • 244. Turkiewicz J.P., Vegas Olmos J.J., Khoe, G.D. i de Waardt, H., 1310-nm to 1550-nm wavelength conversion by utilizing nonlinear polarization rotation in a semiconductor optical amplifier. Proceedings of Optical Fiber Communications Conference and National Fiber Optic Engineers Conference (OFC/NFOC) 2005, Anaheim, USA, paper OME48.
  • 245. Turkiewicz J.P., Hill M.T., Vegas Olmos J.J., Konnen A.M.J., Khoe G.D. i de Waardt H., All-optical 4x2.5 Gbit/s 1310 nm WDM to 10 Gbit/s 1550 nm OTDM transmultiplexing, Proceedings of European Conference on Optical Communications (ECOC) 2006, Cannes, France, paper Tu3.4.7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60ebc0b9-32d0-42ca-989c-b1318176f824
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.