PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interval versions of central-difference method for solving the poisson equation in proper and directed interval arithmetic

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To study the Poisson equation, the central-difference method is often used. This method has the local truncation error of order O(h2 +k2), where h and k are mesh constants. Using this method in conventional floating-point arithmetic, we get solutions including the method, representation and rounding errors. Therefore, we propose interval versions of the central-difference method in proper and directed interval arithmetic. Applying such methods in floating-point interval arithmetic allows one to obtain solutions including all possible numerical errors. We present numerical examples from which it follows that the presented interval method in directed interval arithmetic is a little bit better than the one in proper interval arithmetic, i.e. the intervals of solutions are smaller. It appears that applying both proper and directed interval arithmetic the exact solutions belong to the interval solutions obtained.
Rocznik
Strony
193--206
Opis fizyczny
Bibliogr. 14 poz., tab., fig.
Twórcy
autor
  • Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland, Institute of Computing Science
autor
  • Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland, Institute of Computing Science
autor
  • Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland, Institute of Mathematics
Bibliografia
  • [1] Delphi Pascal IntervalArithmetic Unit, http://www.cs.put.poznan.pl/amarciniak/DEL-wyklady/IntervalArithmetic.pas
  • [2] Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical Toolbox for Verified Computing I: Basic Numerical Problems, Springer, Berlin (1993)
  • [3] Hoffmann, T., Marciniak, A.: Solving the Poisson Equation by an Interval Difference Method of the Second Order, Computational Methods in Science and Technology 19 (1), 13{21, (2013)
  • [4] Marciniak, A.: An Interval Difference Method for Solving the Poisson Equation{ the First Approach, Pro Dialog 24, 49-61, (2008)
  • [5] Marciniak, A.: Selected Interval Methods for Solving the Initial Value Problem, Publishing House of Poznan University of Technology, Poznan (2009)
  • [6] Marciniak, A.: On Realization of Floating-Point Directed Interval Arithmetic, 2012, http://www.cs.put.poznan.pl/amarciniak/KONF-referaty/DirectedArithmetic.pdf
  • [7] Markov, S.: On Directed Interval Arithmetic and its Applications, Journal of Universal Computer Science 7, 514-526, (1995)
  • [8] Nakao, M.T.: A Numerical Approach to the Pro_ of Existence of Solutions for Elliptic Problems, Japan Journal of Industrial and Applied Mathematics 5 (2), 313-332, (1988)
  • [9] Nakao, M.T.: Numerical Verification Methods for Solutions of Ordinary and Partial Differential Equations, Numerical Functional Analysis and Optimization 22, 321-356, (2001)
  • [10] Nakao, M.T., Watanabe, Y.: An E_cient Approach to the Numerical Verification for Solutions of Elliptic Differential Equations, Numerical Algorithms 37, 311-323, (2004)
  • [11] Popova, E.D.: Extended Interval Arithmetic in IEEE Floating-Point Environ- ment, Interval Computations 4, 100-129, (1994)
  • [12] Schwandt, H.: An Interval Arithmetic Approach for the Construction of an Al- most Globally Convergent Method for the Solution of Nonlinear Poisson Equation on the Unit Square, SIAM Journal of Scientific and Statistical Computing 5 (2), 427-452, (1984)
  • [13] Schwandt, H.: Almost Globally Convergent Interval Methods for Discretizations of Nonlinear Elliptic Partial Differential Equations, SIAM Journal on Numerical Analysis 23 (2), 304-324, (1986)
  • [14] Schwandt, H.: The Solution of Nonlinear Elliptic Dirichlet Problems on Rectan- gles by Almost Globally Convergent Interval Methods, SIAM Journal on Scientific and Statistical Computing 6 (3), 617-638, (1985)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60ea5d19-e47c-41ee-b0e3-1dcf2b6a8bd2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.