PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Green synthesis and spectral analysis of surface encapsulated copper (II) oxide nanostructures

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanostructures of copper (II) oxide were synthesized through chemical reduction of copper (II) sulfate pentahydrate using phytochemicals present in leaf extracts of Leucas aspera. The crystalline phases and size were assessed by X-ray diffraction data analysis. From the Bragg reflection peaks, existence of monoclinic end-centered phase of copper (II) oxide along with presence of cubic primitive phase of copper (I) oxide and traces of cubic face centered lattices of zero valent copper was revealed. The three Raman active modes corresponding to CuO phase were identified in the sample with permissible merging of characteristic bands due to nanostructuring and organic capping. The surface topography measurement using field emission scanning electron microscope evidenced the occurrence of cylindrical rod shaped morphological structures along with a number of unshaped aggregates in the sample. The effective crystallite size and lattice strain were estimated from Williamson-Hall analysis of Bragg reflection data. Tauc plot analysis of UV-Vis-NIR absorption data in direct transition mode provided an estimation of band gap, viz. 1.83 eV and 2.06 eV respectively, for copper (II) oxide and copper (I) oxide. Thermal degradation study using thermogravimetric curve analysis could reveal the amount of moisture content, volatile components as well as the polymer capping over nanorods present in the sample. It could be seen that upon heating, inorganic core crystals undergo oxidation process and at temperature above 464 °C, the sample was found to be composed solely of inorganic crystallite phase of copper (II) oxide.
Słowa kluczowe
Wydawca
Rocznik
Strony
503--509
Opis fizyczny
Bibliogr. 56 poz., rys.
Twórcy
  • Post Graduate Department of Physics, TKMM College, Nangiarkulangara, Alappuzha, Kerala-690513, India
Bibliografia
  • [1] LI S.K, PAN Y.Y, WU M., HUANG F.Z, LI C.H., SHEN Y.H., Appl. Surface Sci., 315 (2014), 169.
  • [2] ZHOU H., WONG S.S., ACS Nano, 2 (2008), 944.
  • [3] MASHOCK M., YU K., CUI S., MAO S., LU G., CHEN J., ACS Appl. Mater. Interfaces, 4 (2012), 4192.
  • [4] WANG P., NG Y.H., AMAL R., Nanoscale, 5(2013), 2952.
  • [5] JUNG S., YONG K., Chem. Commun., 47(2011), 2643.
  • [6] PARK J.C., KIM J., KWON H., SONG H., Adv. Mater., 21 (2009), 803.
  • [7] YIN Z., WANG Z., DU Y., QI X., HUANG Y., XUE C., ZHANG H., Adv. Mater., 24 (2012), 5374.
  • [8] PRASAD A.S, Mater. Sci. Semicond. Process., 53 (2016) 79.
  • [9] PRASAD A.S., Mater. Sci. Semicond. Process., 71 (2017), 342
  • [10] NASROLLAHZADEH M., MAHAM M., SAJADI S.M., J. Colloid Interface Sci., 455 (2015), 245.
  • [11] NASROLLAHZADEH M., SAJADI M.S., ROSTAMIVARTOONI A., J. Colloid Interface Sci., 459 (2015), 183.
  • [12] XIA Y., YANG P., SUN Y., WU Y., MAYERS B., GATES B., YIN Y., KIM F., YAN H., Adv. Mater., 15(2003), 353.
  • [13] DHINESHBABU N.R., RAJENDRAN V., NITHYAVARTHY N., VETUMPERUMAL R., Appl. Nanosci., 6(2016), 933.
  • [14] FENG Y.Z., ZHENG X.L., Nano Lett., 10 (2010), 4762.
  • [15] CAO J.L., SHAO G.S., WANG Y., LIU Y.P., YUAN Z.Y., Catal. Commun., 9 (2008), 2555.
  • [16] XU L., SITHAMBARAM S., ZHANG Y., CHEN C., JIN L., Chem. Mater., 21 (2009), 1253.
  • [17] YANG M., HE J., HU X., YAN C., CHENG Z., Environ. Sci. Technol., 45 (2011), 6088.
  • [18] WANG G.L., HUANG J.C., CHEN S.L., GAO Y.Y., CAO D.X., J. Power Sources, 196 (2011),5756.
  • [19] CHAUDHARY Y.S., AGRAWAL A., SHRIVASTAV R., SATSANGI V.R., DASS D., Int. J. Hydrogen Energ., 29 (2004),131.
  • [20] KAUR G., SAINI K., TRIPATHI A.K., JAIN V., DEVA D., Vacuum, 139 (2017),136.
  • [21] JIANG X., HERRICKS T., XIA Y., Nano Lett., 2 (2002), 1333.
  • [22] LIU B., ZENG H.C., J. Am. Chem. Soc., 126 (2004), 8124.
  • [23] XU L., SITHAMBARAM S., ZHANG Y., CHEN C.H., JIN L., JOESTEN R., SUIB S.L., Chem. Mater., 21 (2009), 1253.
  • [24] YU X.Y., XU R. X., GAO C., LUO T., JIA Y., LIU J.H., HUANG X.J., ACS Appl. Mater. Interfaces, 4 (2012), 1954.
  • [25] GAO D., YANG G., LI J., ZHANG J., ZHANG J., XUE D., J. Phys. Chem. C, 114 (2010), 18347.
  • [26] WANG H., SHEN Q., LI X., LIU F., Langmuir, 25 (2009), 3152.
  • [27] ZHANG Q., ZHANG K., XU D., YANG G., HUANG H., NIE F., LIU C., YANG S., Prog. Mater. Sci., 60 (2014),208.
  • [28] GAO S., YANG S., SHU J., ZHANG S., LI Z., JIANG K., J. Phys. Chem. C, 112 (2008),19324.
  • [29] SONIA S., JAYRAM N.D., KUMAR S.P., MANGALARAJ D., PONPANDIAN N., VISWANATHAN C., Super Latt. Microstruct., 66 (2014), 1.
  • [30] YANG C., SU X., XIAO F., JIAN J., WANG J., Sensor. Actuat. B, 158 (2011), 299.
  • [31] WU H.W., LEE S.Y., LU W.C., CHANG K.S., Appl. Surface Sci., 344 (2015), 236.
  • [32] YU L., ZHANG G., WU Y., BAI X., GUO D., J. Cryst. Growth, 310 (2008), 3125.
  • [33] WANG H., XU J.Z., ZHU J.J., CHEN H.Y., J. Cryst. Growth, 244 (2002), 88.
  • [34] TANG X.L., REN L., SUN L.N., TIAN W.G., CAO M.H., HU C.W., Chem. Res. Chinese U, 22 (2006), 547.
  • [35] ZHANG H., LI S., M X., YANG D., Mater. Res. Bull., 43(2008), 1291.
  • [36] SIEGFRIED M.J., CHOI K.S., Angew. Chem. Int. Ed., 44 (2005), 3218.
  • [37] KUO C.H., CHEN C.H., HUANG M H., Adv. Funct. Mater., 17 (2007), 3773.
  • [38] LIU B., ZENG H.C., J. Am. Chem. Soc., 126 (2004), 8124.
  • [39] LIU J., XUE D., Adv. Mater., 20 (2008), 2622.
  • [40] ZHU G., XU H., XIAO Y., LIU Y., YUAN A., SHEN X., ACS Appl. Mater. Interfaces, 4 (2012),744.
  • [41] JIANG X., HERRICKS T., XIA Y., Nano Lett., 2 (2002), 1333.
  • [42] LATHA. B, RUMAISA. Y, SOUMYA. C.K, SHAHUL S., SADHIYA N., J. Chem. Pharma. Res., 5(4)(2013),222.
  • [43] SAGAYA J., AROCKIASAMY K., IRUDAYARAJ J., Ceram. Int., 42 (2016), 6198.
  • [44] MAGESHWARI K., SATHYAMOORTHY R., Appl. Nanosci., 3 (2013), 161.
  • [45] LIU C., CHENG Q., ZHENG J., YANG T., IEEE Image and Signal Processing, (2009).
  • [46] CULLITY B.D., Elements of X-ray diffraction, Addison- Wesley, Reading, 1978.
  • [47] WILLIAMSON G.K., HALL W.H., Acta Metall., 1 (1953),22.
  • [48] BIJU V., SUGATHAN N., VRINDA V., SALINI S.L., J. Mater. Sci., 43 (4) (2008), 1175.
  • [49] BHATTACHARYA D., CHAUDHURI S., PAL A.K., Vacuum, 43 (1992), 313.
  • [50] HASSANIEN A.S., AKL A.A., Superlattices Microstruct., 89 (2016), 153.
  • [51] TAUC J., GRIGOROVICI R., VANCU A., Phys. Status Solidi, 15 (1966), 627.
  • [52] DAVIS E.A., MOTT N.F., Philos. Magn., 22 (1970), 903.
  • [53] RADHAKRISHNAN A.A., BEENA B.B., Indian J. Adv. Chem. Sci., 2 (2014), 158.
  • [54] LEONARD K.C., NAM K.M., LEE H.C., KANG S.H., PARK H.S., BARD A.J., J. Phys. Chem. C, 117 (2013), 15901.
  • [55] SCHUBERT E.F., Light-Emitting Diodes, 2nded., Cambridge University Press, Cambridge, 2006.
  • [56] NASROLLAHZADEH M., MAHAMB M., SAJADI S.M., J. Colloid. Interface Sci., 455 (2015), 245.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60e598a6-4b31-40a1-a7c1-1651fbc32b92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.