Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A microporous SAPO-11 Molecular sieve was successfully synthesized by the hydrothermal method, using a single agent, as an organic template: di-isopropylamine (DIPA). The obtained solid was calcined at 550◦C for three hours, after which the flow of nitrogen was exchanged for that of synthetic air and submitted for another ten hours of calcination, so as to remove the single agent: di-isopropylamine, which after the removal of the template could be observed by the high crystallization of the sample. Furthermore, the molecular sieve was characterized by XRD, SEM, TG-DTG and N2 adsorption desorption (BET analysis). The obtained catalyst proved to have a high potential catalytic activity and selectivity, through the obtained characterization results, exhibiting good hydrothermal stability. The catalytic performance of SAPO-11 was tested by the deactivation/regenerability of the coked sample, furthered by cracking of n-hexane reaction and high olefins selectivity was obtained.
Rocznik
Tom
Strony
481--488
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mechanical Engineering, Federal University of Rio Grande do Norte, P.O. Box 1662 59078-970, Natal/RN, Brazil
autor
- Department of Chemistry, Federal University of Rio Grande do Norte, 59078-970, Natal/RN, Brazil
autor
- Department of Biology, Federal University of Rio Grande do Norte, 59078-970, Natal/RN, Brazil
autor
- Department of Mechanical Engineering, Federal University of Rio Grande do Norte, P.O. Box 1662 59078-970, Natal/RN, Brazil
autor
- Department of Chemistry, Federal University of Rio Grande do Norte, 59078-970, Natal/RN, Brazil
autor
- Department of Chemistry, Federal University of Rio Grande do Norte, 59078-970, Natal/RN, Brazil
autor
- Department of Chemistry, Federal University of Rio Grande do Norte, 59078-970, Natal/RN, Brazil
autor
- Department of Mechanical Engineering, Federal University of Rio Grande do Norte, P.O. Box 1662 59078-970, Natal/RN, Brazil
autor
- Department of Mechanical Engineering, Federal University of Rio Grande do Norte, P.O. Box 1662 59078-970, Natal/RN, Brazil
- Department of Mechanical Engineering, Federal University of Rio Grande do Norte, P.O. Box 1662 59078-970, Natal/RN, Brazil
- Department of Mechanical Engineering, Federal University of Rio Grande do Norte, P.O. Box 1662 59078-970, Natal/RN, Brazil
Bibliografia
- [1] S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan, and E.M. Flanigen, “Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids”, J. Am. Chem. Soc. 104, 1146–1147 (1982).
- [2] B.M. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, and E.M. Flanigen,“Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids”, J. Am. Chem. Soc. 106, 6092–6093 (1984).
- [3] C.M. Lopez, F.J. Machado, J. Goldwasser, B. Mendez, K. Rodriguez, and M.M. Ramirezagudelo, “The successive crystallization and characterization of SAPO-31 and SAPO-11 from the same synthesis gel – influence on the selectivity for 1-butene isomerization”, Zeolites 19, 133–141 (1997).
- [4] A.K. Sinha and S. Seelan, “Characterization of SAPO-11 and SAPO-31 synthesized from aqueous and non-aqueous media”, Appl. Catal. A. 270, 245–252 (2004).
- [5] B.M. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, and E.M. Flanigen, “Crystalline silicoaluminophosphates”, US Patent, 4440871, (1984).
- [6] E.M. Flanigen, B.M. Lok, R.T. Patton, and S.T. Wilson, “Aluminophosphate molecular sieves and the periodic table”, Proc. 7thInt. Zeolite Conf. 1, 103–112 (1986).
- [7] A.S. Araujo, J.C. Diniz, A.O.S. Silva, and R.A.A. Melo, “Hydrothermal synthesis of cerium aluminophosphate”, J. Alloys Compd. 250, 532–535 (1997).
- [8] N. Rajic, V. Kaucic, and D. Stojakovic, “Synthesis and characterization of the CoSAPO-14 and CoSAPO-34”, Zeolites 10, 169–173 (1990).
- [9] G. Nardin, L. Randaccio, N. Rajik, and V. Kaucic, “The structure of CoSAPO-34, containing i-propylamine as a template”, Zeolites 11, 192–194 (1991).
- [10] R. Wang, C.F. Lin, Y.S. Ho, L.J. Leu, and K.J. Chao, “Silicon species in a SAPO-5 molecular sieve”, Appl. Catal. A 72, 39–49 (1991).
- [11] D. Goldfarb, “MAS n.m.r and e.s.r. studies of MnALPO5”, Zeolites 9, 509–515 (1989).
- [12] A.M. Prakash and S. Unnikrishnan, “Synthesis of SAPO-34: high silicon incorporation in the presence of morpholine as template”, J. Chem. Soc. Faraday Trans. 90, 2291–2296 (1994).
- [13] J. Tan, Z. Liu, X. Bao, X. Liu, X. Han, C. He, and R. Zhai, “Crystallization and Si incorporation mechanisms of SAPO-34”, Micropor. Mesopor. Mater. 53, 97–108 (2002).
- [14] Ø.B. Vistad, D.E. Akporiaye, F. Taulelle, and K.P. Lillerud, “In Situ NMR of SAPO-34 crystallization”, Chem. Mater. 15, 1639–1649 (2003).
- [15] H.O. Pastore, S. Coluccia, and L. Marchese, “Porous aluminophosphates: from molecular sieves to designed acid catalysts”, Annu. Rev. Mater. Res. 35, 351–395 (2005).
- [16] B.M. Lok, T.R. Cannan, and C.A. Messina, “The role of organic molecules in molecular sieve synthesis”, Zeolites 3, 282–291 (1983).
- [17] R. Vomscheid, M. Briend, M.J. Peltre, and D. Barthomeuf, “Reversible interaction of NH3 with the framework of template-free zeolite-type SAPO-34”, J. Chem. Soc. Faraday Trans. 91, 3281–3284 (1995).
- [18] P. Meriaudeau, V.A. Tuan, V.T. Nghiem, S.Y. Lai, L.N. Hung, and C. Naccache, “SAPO-11, SAPO-31 and SAPO-41 molecular sieves: synthesis, characterization, and catalytic properties in n-octane hydroisomerization”, J. Catal. 169, 55–66 (1997).
- [19] J.M. Campelo, F. Lafont, and J.M. Marinas, “Hydroisomerization and hydrocracking of n-hexane on Pt/SAPO-5 and Pt/SAPO-11”, Zeolites 15, 97–103 (1995).
- [20] M. Alfonzo, J. Goldwasser, C.M. Lopez, F.J. Machado, M. Matjushin, and B. M´endez, “Effect of the synthesis conditions on the crystallinity and surface acidity of SAPO-11”, J. Mol. Catal. A 98, 35–48 (1995).
- [21] S. Vyazovkin, “Modification of the integral isoconversional method to account for variation in the activation energy”, J. Computational Chemistry 22, 178–183 (2001).
- [22] S. Vyazovkin and C.A. Wright, “Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data”, Thermochim. Acta 340, 53–68 (1999).
- [23] A.I. Biaglow, A.T. Adamo, G.T Kokotailo, and R.J. Gorte, “An examination of the acid sites in SAPO-5”, J. Catal. 131, 252–259 (1991).
- [24] S. Zhang, S. Chen, P. Dong, G. Yuan, and K. Xu, “Characterization and hydroisomerization performance of SAPO-11 molecular sieves synthesized in different media”, Appl. Catal. A. 332, 46–55 (2007).
- [25] A.K. Sinha, S. Sainkar and S. Sivasanker, “An improved method for the synthesis of the silicoaluminophosphate molecular sieves, SAPO-5, SAPO-11 and SAPO-31”, Micropor. Mesopor. Mater 31, 321–331 (1999).
- [26] J.H. de Boer, D.H. Everett, and F.S. Stone, The Structure and Properties of Porous Materials, pp. 68–94, Butterworth, London, 1958.
- [27] S. Chen and G. Manos, “In situ thermogravimetric study of coke formation during catalytic cracking of normal hexane and 1-hexene over ultrastable Y zeolite”, J. Catal. 226, 343–350 (2004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60e36aee-06f1-4e83-a16e-6436e38eb15c