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Abstract: The paper describes structures which can be used to represent
activities of broad class. The concept of event structure is generalized to
represent activities which may be discrete, continuous, or of mixed nature.
Configuration structures of the more general event structures are used to
define axiomatically configuration domains. Elements of such domains are
abstract representants of runs of represented activities. The partial order
of elements reflects how each run extends to longer runs. It is shown that
configuration domains define event structures which can be interpreted as
interactions of sets of objects.

Keywords: Activity, run, event, causal dependency relation, conflict re-
lation, event structure, configuration, configuration structure, partially or-
dered set, directed complete partially ordered set, configuration domain,
transition, region.

CZȨŚCIOWO UPORZA̧DKOWANE DZIEDZINY
DO REPREZENTOWANIA DZIA LALNOŚCI

Streszczenie: Praca opisuje struktury, których można użyć do reprezen-
towania szeroko rozumianych dzia lalności. Uogólnia struktury zdarzeń tak,
by mog ly reprezentować dzia lalności dyskretne, cia̧g le i mieszanej natury.
Konfiguracje tak uogólnionych struktur zdarzeń zosta ly użyte do aksjomaty-
cznej definicji dziedzin konfiguracji. Elementy takich dziedzin sa̧ abstrak-
cyjnymi reprezentantami przebiegów reprezentowanych dzia lalności. Pokazano,
że dziedziny konfiguracji definiuja̧ struktury zdarzeń, które można interpre-
tować jako wspó ldzia lania pewnych zbiorów obiektów.

S lowa kluczowe: Dzia lalność, przebieg, zdarzenie, relacja zależności przy-
czynowej, relacja konfliktu, struktura zdarzeń, konfiguracja, struktura kon-
figuracji, zbiór czȩściowo uporza̧dkowany, skierowany zupe lny zbiór czȩściowo
uporza̧dkowany, dziedzina konfiguracji, tranzycja, region.
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1 Introduction

The aim of the paper is twofold.
First, the concept of event structure such as in [6] is generalized in

order to represent and relate activities that may be arbitrary combination of
discrete and continuous behaviour (cf. [4]). Second, configuration structures
of generalized event structures similar to those in [3] are used to define
axiomatically a broad class of partially ordered sets of abstract elements
which may represent runs of activities, to represent the partially ordered sets
thus defined as generalized event structures, and to describe the properties
of the respective structures.

Activities which consist of indivisible events can be described by spec-
ifying what events may occur, how each event depends on the events which
occurred earlier, and how the events exclude each other in a run of the
represented activity. The corresponding model is an event structure E =
(E,≤, \) consisting of a set E of events, a partial order ≤ on E, the causal
dependency relation, and an irreflexive and symmetric relation \ on E, the
conflict relation, such that: (1) the relations ≤ and \ are mutually exclusive,
(2) every set e↓ = {e′ : e′ ≤ e} is finite, and (3) for every e, e′, e′′ ∈ E if
e ≤ e′ then the conflict e′ \ e′′ is inherited from the conflict e \ e′′ in the
sense that e \ e′′ implies e′ \ e′′. If two events are not causally dependent
nor in conflict then they are said to be concurrent.

Partial and full runs of the activity represented by an event structure
E = (E,≤, \) are represented by configurations of E where a configuration
is a downwards-closed conflict-free subset x of E, i.e., a subset of E such
that: (1) whenever e ∈ x and e′ ≤ e then e′ ∈ x, and (2) for every e, e′ ∈ x,
it is not the case that e \ e′. The set CE of configurations of E, partially
ordered by inclusion, is a partially ordered set (a poset) CE. It is known
(see [6]) that the poset CE = (CE,⊆), called a configuration structure, is
coherent (i.e. every X ⊆ CE in which every pair of elements have an upper
bound in CE has the least upper bound

⋃
X in CE), that it is a prime

algebraic domain (i.e. every c ∈ CE is the least upper bound of the set of
those d ⊆ c which are complete prime in the sense that d ⊆

⋃
X implies

d ⊆ x for some x ∈ X for any set X for which
⋃

X exists), and that it
is finitary (i.e. its every complete prime is finite). Moreover, d ∈ CE is a
complete prime iff d = {e ∈ E : e ≤ d} and e \ e′ iff there is no d ∈ CE that
contains e and e′.

Usually, events of an event structure are considered to represent actions.
However, nothing prevents from considering them as situations and from
dropping the requirement of finitely many predecessors of each event.
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1.1. Example. Consider two independent objects v and w where the state
of v at every moment t of the local time of v is represented by a number
g(t) ∈ [0,∞) and the state of w at every moment s of the local time of w is
represented by a number h(s) ∈ [0,∞).

Let F be the set of initial segments of functions f : [0,∞) → [0,∞)
where an initial segment of f is the restriction of f to an initial segment
of its domain including the empty segment. For every function f ∈ F , let
f↓ denote the set of initial segments of f . Let E1 = (E1,≤1, \1) consist of
the set E1 = {v} × F ∪ {w} × F , of the least partial order ≤1 such that
(v, g) ≤1 (v, g′) iff g is an initial segment of g′ and (w, h) ≤1 (w, h′) iff h is an
initial segment of h′, and of the relation \1 that relates incomparable (v, g)
and (v, g′) and incomparable (w, h) and (w, h′). Then E1 can be regarded
as an event structure even though its may have elements with infinitely
many predecessors, and the sets c0 = ∅, c1 = {v} × g↓, c2 = {w} × h↓,
c = {v} × g↓ ∪ {w} × h↓ with g, h ∈ F can be regarded as configurations of
E1. ]

Consequently, every event structure E = (E,≤, \) considered in this
paper is supposed to consist of a set E of events, a partial order ≤ on E,
the causal dependency relation, and an irreflexive and symmetric relation \
on E, the conflict relation, such that: (1) the relations ≤ and \ are mutually
exclusive, and (2) for every e, e′, e′′ ∈ E if e ≤ e′ then the conflict e′ \ e′′ is
inherited from the conflict e \ e′′ in the sense that e \ e′′ implies e′ \ e′′.

Configurations and related notions are defined as for standard event
structures. If (c, c′) is a pair of configurations such that c ⊆ c′ then it
represents a transition c → c′ from c to c′. Independence of transitions
t → x and t → y is represented by the fact that the diagram (x ← t →
y, x→ z ← y) is a diamond in the sense that t is the greatest lower bound
of x and y and z is the least upper bound of x and y.

It is clear that configuration structures of the more general event struc-
tures need not to be finitary. However, their remaining properties are the
same as the properties of configuration structures of standard event struc-
tures. Moreover, every such a structure C = (C,→) enjoys the following
properties:

(A1) C is a directed complete poset,

(A2) every nonempty subset X of C has the greatest lower bound,

(A3) for every diagram (x ← t → y, x → z ← y) there exists a unique
diamond (x← t′ → y, x→ z′ ← y) such that t→ t′ and z′ → z,
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(A4) for every diamond (x← t→ y, x→ z ← y) with x→ c or y → c there
exists c′ such that c→ c′ and z → c′,

(A5) if x → z′ → z and (x ← t → y, x → z ← y) is a diamond then there
exists t′ such that t → t′ → y and (x ← t → t′, x → z ← t′) and
(z′ ← t′ → y, z′ → z ← y) are diamonds,

(A6) if t → t′ → y and (x ← t → y, x → z ← y) is a diamond then there
exists z′ such that x → z′ → z and (x ← t → t′, x → z ← t′) and
(z′ ← t′ → y, z′ → z ← y) are diamonds. ]

The properties (A1) - (A3) follow from the properties of event struc-
tures and from the definition of configurations. The property (A4) follows
from the fact that events in conflict relation have no common upper bound.
For (A5) it suffices to define t′ as the greatest lower bound of z′ and y and
notice that a configuration structure is a subset of the distributive lattice of
subsets of a set. Similarly, for (A6) it suffices to define z′ as the least upper
bound of t′ and x.

In this paper we are interested in representing activities not only with
the aid of the more general event structures and their configuration struc-
tures, but rather with the aid of arbitrary posets that enjoy only the rela-
tively weak properties (A1) - (A6).

1.2. Example. ⊥ → a, b, c→ > is a poset that enjoys the properties (A1)
- (A6), but it is not an algebraic domain because > cannot be represented
as the least upper bound of complete primes. Indeed, none of the elements
a, b, c is a complete prime since it is dominated by the least upper bound of
the remaining two elements and it is not dominated by any of them. ]

Posets which enjoy the properties (A1) - (A6) will be called configura-
tion domains. It will be shown that every configuration domain defines a
generalized event structure.

2 Configuration domains

The posets that are supposed to represent activities are defined as follows.

2.1. Definition. A configuration domain is a nonempty partially ordered
set C = (C,→) consisting of a set C of elements called configurations and
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of a partial order → in this set such that C enjoys the properties (A1) -
(A6). ]

As in the case of configuration structures of event structures, elements
of C are again supposed to represent runs of the represented activities.
Ordered pairs of elements c and c′ such that c→ c′ are called transitions.

Diagrams (x ← t → y, x → z ← y) such that t is the greatest lower
bound of x and y and z is the least upper bound of x and y are called
diamonds. Given a diamond D = (x ← t → y, x → z ← y), elements
t, x, y, z are called nodes of D and transitions t → x, t → y, x → z, y → z
are called sides of D.

2.2. Example. Let E1 = (E1,≤1, \1) be the event structure in example
1.1. The corresponding configuration domain is the partially ordered set
C1 = (C1,→1) where C1 is the set of configurations of E1 and →1 is the
inclusion. Every diagram (c←1 c∩ c′ →1 c′, c→1 c∪ c′ ←1 c′) is a diamond
in C1. In particular, the configurations c0 = ∅, c1 = {v}×g↓, c2 = {w}×h↓,
c = {v} × g↓ ∪ {w} × h↓ with g, h ∈ F are elements of C1 and the diagram
(c1 ←1 c0 →1 c2, c1 →1 c←1 c2) is a diamond. ]

2.3. Example. The poset in example 1.2 is a configuration domain C2 .
]

The following propositions follow from the definition.

2.4. Proposition. C has the least element ⊥. ]

2.5. Proposition. Every c ∈ C has an upper bound which is a maximal
element of C. ]

2.6. Proposition. For every c ∈ C the restriction of C to the set c↓ =
{d ∈ C : d→ c} is a configuration domain (written also as c↓). ]

3 Independence and equivalence of transitions

The concept of a diamond can be used to define independence and equiva-
lence of transitions. of a configuration domain.
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3.1. Definition. If (v ← u → w, v → u′ ← w) is a diamond in a
configuration domain C = (C,→) then the transitions u → v and u → w
are said to be parallel independent, and the transitions u → v and v → u′,
as well as the transitions u → w and w → u′, are said to be sequential
independent (cf. [2]). ]

3.2. Example. For the configuration domain C1 in example 2.2 and its
configurations c0 = ∅, c1 = {v}×g↓, c2 = {w}×h↓, c = {v}×g↓∪{w}×h↓,
the transitions c0 → c1 and c0 → c2 are parallel independent, and the
transitions c0 →1 v and c1 →2 c are sequential independent. ]

3.3. Definition. By the natural equivalence of transitions of a configura-
tion domain C = (C,→) we mean the least equivalence relation ≡ between
transitions such that u → v ≡ w → u′ whenever in this configuration
domain there exists a diamond (v ← u→ w, v → u′ ← w). ]

3.4. Examples. Consider the configuration domain C1 in example 2.2.
In this domain the transitions c0 → c1 and c2 → c are equivalent, and the
transitions c0 → c2 and c1 → c are equivalent. ]

4 Regions of configuration domains

The existence in configuration domains of the natural equivalence of transi-
tions makes it possible to adapt and exploit the concept of a region similar
to that introduced in [1].

4.1. Definition. By a region of a configuration domain C = (C,→) we
mean a nonempty subset r of the set of elements of C such that:

u ∈ r and v /∈ r and w → u′ ≡ u→ v implies w ∈ r and u′ /∈ r,
u /∈ r and v ∈ r and w → u′ ≡ u→ v implies w /∈ r and u′ ∈ r. ]

4.2. Example. Given a function f : [0,∞) → [0,∞) and some t ∈
[0,∞) ∪ {∞}, let ft with t ∈ [0,∞) denote the restriction of f to the
interval [0, t] and let f∞ denote f . In the configuration domain C1 in
example 2.2 every set c = {v} × g↓ ∪ {w} × h↓, is a configuration, the sets
p(g, t) = {v} × g↓t ∪ {w} × F and q(h, s) = {v} × F ∪ {w} × h↓s are minimal
regions. ]
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4.3. Example. In the configuration domain C2 in example 2.3 the sets
{⊥, a}, {b,>}, {⊥, b}, {a,>}, {⊥, a}, {c,>}, {⊥, c}, {a,>}, {⊥, b}, {c,>},
{⊥, c}, {b,>} are minimal regions. ]

From the definition of a region we obtain the following propositions.

4.4. Proposition. If C = (C,→) is a configuration domain, r is a region
of C, and (v ← u→ w, v → u′ ← w) is a diamond in C, then v ∈ r implies
that u ∈ r or u′ ∈ r. ]

4.5. Proposition. The set of all configurations of C is a region of C. ]

4.6. Proposition. If p and q are disjoint regions of C then p∪q is a region
of C. ]

4.7. Proposition. If p and q are different regions of C such that p ⊆ q
then q − p is a region of C. ]

Given a chain (ri : i ∈ I) of regions with r =
⋂

(ri : i ∈ I) and a
transition c → d such that c ∈ r and d /∈ r, there exists i0 ∈ I such that
c ∈ ri and d /∈ ri for i > i0. Consequently, for every transition c′ → d′

such that c′ → d′ ≡ c → d we have c ∈ ri and d /∈ ri for i > i0, and thus
c ∈ r and d /∈ r. Similarly, for c → d such that c /∈ r and d ∈ r and for
c′ → d′ ≡ c→ d. So, r is a region. Hence, taking into account Kuratowski
- Zorn Lemma, we obtain the following results.

4.8. Proposition. Every region of C contains a minimal region. ]

4.9. Proposition. Every configuration of C belongs to a minimal region.
]

4.10. Proposition. If a configuration s of C does not belong to a region
r then there exists a minimal region r′ such that r ∩ r′ = ∅ and s ∈ r′. ]

4.11. Proposition. Every region of C can be represented as a disjoint
union of minimal regions. ]

Proof. Let r be a region of C that contains a minimal region m of C. Then
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every minimal region n of r−m is a minimal region of C. Indeed, it cannot
contain an element of m since then m could not be minimal. On the other
hand, it cannot contain an element of (r −m) − n since then m could be
minimal. ]

4.12. Example. In the configuration domain C1 in example 2.2 we have
the following decompositions of the set of configurations into disjoint union
of minimal regions: V = {p(g, t) : t ∈ [0,∞) ∪ {∞}, g : [0,∞) → [0,∞)}
and W = {q(h, s) : s ∈ [0,∞) ∪ {∞}, h : [0,∞)→ [0,∞)}. ]

4.13. Example. In the configuration domain C2 in example 2.3 we
have the following decompositions of the set of configurations into dis-
joint union of minimal regions: x = {{⊥, a}, {b,>}}, y = {{⊥, a}, {c,>}},
z = {{⊥, b}, {a,>}}, t = {{⊥, b}, {c,>}}, u = {{⊥, c}, {a,>}},
v = {{⊥, c}, {b,>}}. ]

4.14. Proposition. For every element c of C and for every region r of C
the subset r|c = {d ∈ r : d→ c} of r is either empty or it is a region of c↓.
]

A proof follows from the fact that every diamond in c↓ is a diamond in
C.

4.15. Example. For the configuration domain C1 in example 2.2, its
region p(g, t) = {v}× g↓t ∪{w}×F , and its element c = {v}× g↓ ∪{w}×h↓

we have p(g, t)|c = {v} × g↓t ∪ {w} × h↓, q(h, s)|c = {v} × g↓ ∪ {w} × h↓s,
V |c = {p(g, t)|c : t ∈ [0,∞) ∪ {∞}, g : [0,∞)→ [0,∞)},
W |c = {q(h, s)|c : s ∈ [0,∞) ∪ {∞}, h : [0,∞)→ [0,∞)}. ]

If c is a maximal element of C then due to (A4) every diamond with
a side in c↓ is a diamond in c↓. Consequently, the maximal elements of C
enjoy the following property.

4.16. Proposition. For every maximal element c of C and for every
minimal region r of C the subset r|c = {d ∈ r : d→ c} of r is either empty
or it is a minimal region of c↓. ]
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Note that if c is not a maximal element of C then the existence in C
of a diamond with a side in c↓ does not necessarily implies the existence of
such a diamond in c↓. Consequently, r|c need not be a minimal region of c↓

even though the region r is a minimal region of C.

5 Configuration domains as event structures

Given a configuration domain C = (C,→), we can assign to C an event
structure
EC = (EC,≤C, \C). To this end we introduce a partial order � on the set
of minimal regions of C and we define EC as follows.

Let RC denote the set of minimal regions of C. Let DC denote the
set of decompositions of the set of elements of EC into disjoint unions of
minimal regions, every decomposition defined as a set d of mutually disjoint
minimal regions from RC such that

⋃
d = C.

The underlying set EC of EC is defined as the set of pairs (d, r) con-
sisting of a decomposition d ∈ DC and of a minimal region r ∈ d.

The partial order ≤C is defined as the least partial order such that
(d, r) ≤C (d′, r′) if r � r′ and r 6= r′ or if d = d′ and r = r′.

The conflict relation \C is defined by assuming (d, r) \C (d′, r′) iff there
is no c ∈ C such that r|c and r′|c are minimal regions in c↓.

Now we are going to prove that EC is indeed an event structure.

The partial order � between minimal regions of C can be introduced
as follows.

5.1. Definition. Given x, y ∈ RC, we write x � y iff for every v ∈ y there
exists u ∈ x such that u → v, for every u ∈ x there exists v ∈ y such that
u→ v, and the following conditions are satisfied:

(1) t ∈ x iff w ∈ y, for every diamond (u ← t → w, u → v ← w) with
u ∈ x and v ∈ y,

(2) t′ ∈ x iff w′ ∈ y, for every diamond (t′ ← u → v, t′ → w′ ← v) with
u ∈ x and v ∈ y. ]

5.2. Proposition. The relation � is a partial order on RC. ]

For a proof it suffices to notice that the relation � follows the partial
order in C.
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The construction of the event structure EC = (EC,≤C, \C) is based
on the following observations (cf. [5]).

First, the properties (A5) and (A6) imply an important property of
minimal regions.

5.3. Proposition. Every minimal region r is convex in the sense that
w ∈ r for every w such that u→ w → v for some u ∈ r and v ∈ r. ]

Second, minimal regions wich are not disjoint are incomparable with
respect to the partial order �.

5.4. Proposition. If minimal regions x, y ∈ RC are not disjoint and
different then neither x � y nor y � x . ]

Proof. Suppose that x and y are different minimal regions of RC such that
x ∩ y 6= ∅. Then x − y and y − x are nonempty and there exist u ∈ x − y,
v ∈ y − x, and w, z ∈ x ∩ y such that u and w are adjacent nodes of a
diamond U , z and v are adjacent nodes of a diamond V , and the nodes of
the diamond W = (w ← w ∧ z → z, w → w ∨ z ← z) are in x ∩ y.

Consider the case in which w = u∨u′ for some u′ not in x and z = v∧v′

for some v′ not in y. Then u′ ∈ y, v′ ∈ x, and the condition (1) is not
satisfied for z → v and the diamond (v ← z → v′, v → v ∨ v′ ← v′).
Consequently, x � y does not hold.

Similarly, in the other possible cases we come to the conclusion that
neither x � y nor y � x. ]

Third, in some configuration domains all disjoint minimal regions are
comparable with respect to the partial order �.

5.5. Proposition. If every elements a and b of C have the least upper
bound a ∨ b and minimal regions x, y ∈ RC are disjoint then either x � y
or y � x. ]

Proof. It is impossible that u and v are incomparable for all u ∈ x and
v ∈ y since one of the regions x or y contains u ∨ v or u ∨ v.

Suppose that u → v for u ∈ x and v ∈ y. As x and y are disjoint and
convex, it suffices to prove that every element of y has a predecessor in x.
Consider w ∈ y. If v → w then u→ w. If w → v then u′ → w for u′ = u∧w
and by considering the diamond (u′ ← u→ v, u′ → w ← v) we obtain that
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u′ ∈ x. If w and v are incomparable then either v ∧ w ∈ y and we may
replace w by v ∧ w and proceed as in the previous case, or v ∨ w ∈ y and
by considering the diamond (u′ ← u→ w, u→ v ∨ w ← w) we obtain that
u′ → w for u′ ∈ x. On the other hand, u→ v for u ∈ x and v ∈ y excludes
v′ → u′ for u′ ∈ x and v′ ∈ y since x and y are convex. Hence x � y.

Similarly, in the case v → u we obtain y � x. ]

One of the consequences of these observations is the following proposi-
tion.

5.6. Proposition. For every d ∈ DC the subset {d}× {r ∈ RC : r ∈ d} of
EC is a maximal chain. ]

A proof follows from the fact that for every maximal c ∈ C the restric-
tions r|c of r from d form a decomposition of Rc↓ into a disjoint union of
minimal regions (see proposition 4.16).

5.7. Proposition. For every c ∈ C, the subset Xc = {(d, r) :∈ EC : c ∈ r}
of EC is a maximal conflict-free antichain of EC. ]

A proof follows from the fact that no minimal regions in Xc are disjoint
and from the fact that c belongs to one minimal region of every decompo-
sition d ∈ DC.

5.8. Proposition. If (d, r) ≤C (d′, r′) then (d, r) \C (d′, r′) does not hold.
]

For a proof it suffices to take into account propositions 2.5 and 4.16
and notice that r|c and r′|c are minimal regions of c↓ for a maximal c that
contains the minimal region r|c.

These results can be summarized in the following theorem.

5.9. Theorem. Given a configuration domain C = (C,→), the system
EC = (EC,≤C, \C) is an event structure with configurations X↓c = {(d, r) :
(d, r) ≤C (d′, r′) for some (d′, r′) ∈ Xc} corresponding to maximal conflict-
free antichains Xc = {(d, r) :∈ EC : c ∈ r} of EC, and with maximal chains
{d} × {r ∈ RC : r ∈ d}. ]
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Each decomposition d ∈ DC can be interpreted as an indivisible object.
Each minimal region r ∈ d can be interpreted as an occurrence of this object.
Consequently, the event structure EC can be interpreted as an interaction
of a set of indivisible objects.

5.10. Example. For the configuration domain C = C1 in example 2.2
the structure EC is isomorphic to the structure E1 in example 1.1 with
the isomorphism i such that i(v, gt) = (V, p(g, t)) with gt = g|[0, t] for
g : [0,∞) → [0,∞) and i(w, hs) = (W, q(h, s)) with hs = h|[0, s] for h :
[0,∞)→ [0,∞). ]

5.11. Example. For the configuration domain C = C2 in example 2.3
the structure EC consists of independent chains (x, {⊥, a}) ≤C (x, {b,>}),
(y, {{⊥, a}) ≤C (y, {c,>}),
(z, {⊥, b}) ≤C (z, {a,>}), (t, {⊥, b}) ≤C (t, {c,>}), (u, {⊥, c}) ≤C (u, {a,>}),
(v, {⊥, c}) ≤C (v, {b,>}.
and of the empty conflict relation. ]

6 Concluding remarks

Making use of the fact that events of event structures can be interpreted
as situations and that they need not to have only finitely many predeces-
sors, we have generalized the concept of event structure and the concept
of configuration structure. Then, using only some properties of configura-
tion structures as axioms, we have introduced the concept of configuration
domains. Finally, we have shown that configuration domains define event
structures which represent interactions of sets of indivisible objects. Thus
new structures have been introduced which can be used to represent in the
same form and relate activities of a broad class.
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