PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on leaching kinetics of laterite ore using hydrochloric acid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The process of atmosphere-pressure acid leaching of laterites has attracted considerable attention in the nickel industry in recent years. However, the leaching kinetics of laterite using hydrochloride acid has not yet been fully researched. In this paper, the mineral analysis of the ore was carried out, and the leaching mechanism of different minerals at different time was studied comprehensively. The kinetics analysis of the leaching process of nickel, cobalt and manganese showed that the kinetics model of diffusion controlling was suitable and could be described by the linear equation, 1-3(1-a)2/3+2(1-a)=k2t. Based on the linear equation and the Arrhenius equation, the values of activation energy of metal leaching can be deduced (11.56 kJ/mol for nickel, 11.26 kJ/mol for cobalt and 10.77 kJ/mol for manganese). Study of leaching mechanism shows that the order of these minerals dissolution is: goethite, lizardite, magnetite and hematite. Due to the original or product of silica, magnetite, hematite and talc, they can form the solid film which hinders the leaching of valuable metals. Thus, the diffusion controlling step is inner diffusion, namely solid film diffusion controlling.
Rocznik
Strony
711--720
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
  • Jiangxi University of Science and Technology, Hongqi Avenue 86, 341000 Ganzhou, China
autor
  • Jiangxi University of Science and Technology
  • Jiangxi University of Science and Technology
autor
  • Jiangxi University of Science and Technology
autor
  • Jiangxi University of Science and Technology
Bibliografia
  • BUYUKAKINCI, E., TOPKAYA Y.A., 2009. Extraction of nickel from lateritic ores at atmospheric pressure with agitation leaching. Hydrometallurgy 97 (1-2), 33-38.
  • OLANIPEKUN, E. O., 2000. Kinetics of leaching laterite. Int. J. Miner. Process. 60 (1), 9-14.
  • FAN, C.L., ZHAI, X.J., FU, Y., CHANG, Y.F., LI, B.C., ZHANG, T.A., 2011. Kinetics of selective chlorination of prereduced limonitic nickel laterite using hydrogen chloride. Miner. Eng. 24 (9), 1016-1021.
  • HALLBERG, K.B., GRAIL, B.M, DU PLESSIS, C.A, JOHNSON, D.B., 2011. Reductive dissolution of ferric iron minerals: A new approach for bio-processing nickel laterites. Miner. Eng. 24 (7), 620-624.
  • MACCARTHY, J., NOSRATI, A., SKINNER, W., ADDAI-MENSAH, J., 2016. Atmospheric acid leaching mechanisms and kinetics and rheological studies of a low grade saprolitic nickel laterite ore. Hydrometallurgy 160, 26-37.
  • LAKSHMANAN, V.I., SRIDHAR, R., CHEN, J., HALIM, M.A., 2016. Development of mixed-chloride hydrometallurgical processes for the recovery of value metals from various resources. Trans. Indian Inst. Met., 1, 39-50.
  • LI, J.H., LI, Y.Y., ZHENG, S., XIONG, D.L., CHEN, H., ZHANG, Y.F., 2015. Research review of laterite nickel ore metallurgy. Nonferrous Metals Science and Engineering 6(1), 35-40.
  • LIU, K., CHEN, Q.Y., YIN, Z.L., HU, H.P., DING, Z.Y., 2012. Kinetics of leaching of a Chinese laterite containing maghemite and magnetite in sulfuric acid solutions. Hydrometallurgy 125-126, 125-136.
  • LIU, W.R., LI, X.H., HU, Q.Y., WANG, Z.X., GU, K.Z., LI, J.H., ZHANG, L.X., 2010. Pretreatment study on chloridizing segregation and magnetic separation of low-grade nickel laterites. Nonferrous Met. Soc. China 20, s82-s86.
  • MA, B.Z., YANG, W.J., YANG, B., WANG, C.Y., CHEN, Y.Q., ZHANG, Y.L., 2015. Pilot-scale plant study on the innovative nitric acid pressure leaching technology for laterite ores. Hydrometallurgy 155, 88-94.
  • MCDONALD, R.G., WHITTINGTON, B.I., 2008a. Atmospheric acid leaching of nickel laterites review Part I. Sulphuric acid technologies. Hydrometallurgy 91 (1–4), 35–55.
  • MCDONALD, R.G., WHITTINGTON, B.I., 2008b. Atmospheric acid leaching of nickel laterites review. Part II. Chloride and bio-technologies. Hydrometallurgy 91 (1–4), 56–69.
  • MUDD, G.M., 2010. Global trends and environmental issues in nickel mining: Sulfides versus laterites. Ore Geology Reviews, 38 (1-2), 9-26.
  • NORGATE, T., JAHANSHAHI, S., 2011. Assessing the energy and greenhouse gas footprints of nickel laterite processing. Miner. Eng., 24 (7), 698-707.
  • RICE, N.M., 2016. A hydrochloric acid process for nickeliferous laterites. Miner. Eng. 88, 28-52.
  • WEI, L., FENG, O., OU, L., ZHANG, G., CHEN, Y., 2010. Kinetics of saprolitic laterite leaching by sulphuric acid at atmospheric pressure. Miner. Eng. 23 (6), 458-462.
  • ZHANG, P.Y., GUO, Q., WEI, G.Y., MENG, L., HAN, L.X., QU, J.K., QI, T., 2016. Leaching metals from saprolitic laterite ore using a ferric chloride solution. J. Clean. Prod. 112, 3531-3539.
  • ZHANG, Q., WEN, S.M., FENG, Q.C., NIE, W.L., WU, D.D., 2017. Dissolution kinetics of hemimorphite in methane sulfonic acid. Physicochem. Probl. Miner. Process., doi: 10.5277/ppmp18105.
  • ZHAO, C.M., CAI, Y.H., NING, Z., WANG, G.C., KANG, S.M., ZHANG, C.M., ZHAI, Y.C., 2017. Recovery of MgO from laterite nickel slag through roasting by ammonium sulfate. Journal of Central South University (Science and Technology), 48 (8), 1972-1978.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60db2f96-917e-45eb-85b7-b5273b65720e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.