Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The influence of the composition of microbiological medium on the efficiency of bacterial cellulose synthesis. The main objective was to investigate the effect of culture medium composition on the process of bacterial cellulose synthesis. Five different nutrients were used as carbon sources for cellulose synthesising microorganisms: glucose, fructose, erythrol, inulin and lactose, added to the medium at three different concentrations (1%, 2.5%, and 4.5%). It was observed that the type and amount of nutrients included in the culture medium significantly affected the cellulose synthesis efficiency. It was observed that the best results of polymer synthesis were obtained on medium containing 1% fructose. Furthermore, the results obtained clearly confirm that the composition of the culture medium has a significant effect on the water retention of the polymer during its synthesis on the culture media.
Wpływ składu podłoża mikrobiologicznego na wydajność syntezy celulozy bakteryjnej. Głównym celem było zbadanie wpływu składu podłoża hodowlanego na process syntezy celulozy bateryjnej. Wykorzystano 5 różnych składników pokarmowych, będących źródłem węgla dla mikroorganizmów syntetyzujących celulozę: glukozę, fruktozę, erytrol, inulinę oraz laktozę, dodanych do podłoża w trzech różnych stężeniach (1%, 2.5%, oraz 4.5%). Zauważono, że rodzaj oraz ilość składników pokarmowych zawartych w podłożu hodowlanym znacząco wpłynęła na wydajność procesu syntezy celulozy. Zaobserwowano, że najlepsze wyniki wydajności syntezy polimeru osiągnięto na podłożu zawierajacycm 1% zawartość fruktozy.. Ponadto otrzymane wyniki jednoznacznie potwierdzają, że skład podłoża hodowlanego ma znaczący wpływ retencję wody przez polimer, w procesie jego syntezy na podłożach hodowlanych.
Słowa kluczowe
Rocznik
Tom
Strony
35--43
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Faculty of Wood Technology, Warsaw University of Life Sciences – SGGW, Poland
autor
- Department of Wood Science and Wood Preservation, Institue of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW, 166 Nowoursynowska St., 02-787 Warsaw, Poland
Bibliografia
- 1. BETLEJ I., SALERNO-KOCHAN R., KRAJEWSKI K.J. , ZAWADZKI J., BORUSZEWSKI P., 2020: The Influence of Culture Medium Components on the Physical and Mechanical Properties of Cellulose Synthesized by Kombucha Microorganisms, BioResources nr. 15; 3125-3135. DOI: 10.15376/biores.15.2.3125-3135
- 2. CANNON R. E., ANDERSON S. M., 2008: Biogenesis of Bacterial Cellulose, Critical Reviews in Microbiology, nr. 17, 1991 - Issue 6. DOI: 10.3109/10408419109115207
- 3. ÇOBAN E.P., BIYIK H., 2011: Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter lovaniensis HBB5, African Journal of Biotechnology nr.10; 5346-5354. DOI: 10.5897/AJB10.1693
- 4. EL-SAIED H., BASTA A.H., GOBRAN R.H., 2004: Research Progress in Friendly Environmental Technology for the Production of Cellulose Products (Bacterial Cellulose and Its Application) Polymer-Plastics Technology and Engineering nr. 43, 2004 - Issue 3. DOI:10.1081/PPT-120038065
- 5. EMBUSCADO M E., MARKS J. S., BEMILLER J. N., 1994: Bacterial cellulose. I. Factors affecting the production of cellulose by Acetobacter xylinum, Food Hydrocolloids nr. 8; 407-418. DOI: 10.1016/S0268-005X(09)80084-2
- 6. ESA F, TASIRIN S.M., RAHMAN N.A., 2014: Overview of Bacterial Cellulose Production and Application, Agriculture and Agricultural Science Procedia nr2, 2014; 113-119. DOI: 10.1016/j.aaspro.2014.11.017
- 7. GALLEGOS A.M.A, CARRERA S.H, PARRA R, KESHAVARZ T., IQBAL H.M.N., 2016: Bacterial Cellulose: A Sustainable Source to Develop Value-Added Products – A Review, BioResources nr. 11; 2 . DOI: 10.15376/biores.11.2.Gallegos
- 8. GREGORYA D.A., TRIPATHI L., FRICKER A.T.R., ASARE E, ORLANDO I., RAGHAVENDRAN V, ROY I., 2021: Bacterial cellulose: A smart biomaterial with diverse applications, Materials Science and Engineering: R: Reports nr. 145; 100623. DOI: 10.1021/acsami.1c06204
- 9. KESHK S.M.A.S., SAMESHIMA K., 2005: Evaluation of different carbon sources for bacterial cellulose production, African Journal of Biotechnology nr 4.; 478-482
- 10. KISELYOVA O.I, LUTSENKO S.V., FELDMAN N. B., GAVRYUSHINA I. A., SADYKOVA V. S., PIGALEVA M. A., RUBINA M. S., GROMOVYKH T.I., 2021: The structure of Gluconacetobacter hansenii GH 1/2008 population cultivated in static conditions on various sources of carbon, Vestnik Tomskogo Gosudarstvennogo Universiteta-Biologiya nr. 53; 22-46. DOI:10.17223/19988591/53/2
- 11. KRYSTYNOWICZ A., CZAJA W., WIKTOROWSKA-JEZIERSKA A., GONÇALVES-MIŚKIEWICZ M., TURKIEWICZ M., BIELECKI S., 2002: Factors affecting the yield and properties of bacterial cellulose, Journal of Industrial Microbiology and Biotechnology, nr 29; 189–195. DOI:10.1038/sj.jim.7000303
- 12. LU H., JIANG X.,2014: Structure and Properties of Bacterial Cellulose Produced Using a Trickling Bed Reactor, Applied Biochemistry and Biotechnology nr 172; 3844–3861. DOI: 10.1007/s12010-014-0795-4
- 13. LU T., GAO H., LIAO B., WU J., ZHANG W., HUANG J., LIU M., HUANG J., CHANG Z., JIN M., YI Z., JIANG D., 2019: Characterization and optimization of production of bacterial cellulose from strain CGMCC 17276 based on whole-genome analysis, Carbohydrate Polymers nr.232; 115788. DOI: 10.1016/j.carbpol.2019.11578
- 14. LUDWICKA K., KOLODZIEJCZYK M., GENDASZEWSKA-DARMACH E., CHRZANOWSKI M., JEDRZEJCZAK-KRZEPKOWSKA M., RYTCZAK P., BIELECKI S., 2018: Stable composite of bacterial nanocellulose and perforated polypropylene mesh for biomedical applications, Wiley Online Library DOI: 10.1002/jbm.b.34191
- 15. NAKAI T., TONOUCHI N., KONISHI T., KOJIMA Y., TSUCHIDA T., YOSHINAGA F., SAKAI F., HAYASHI T., 1999: Enhancement of cellulose production by expression of sucrose synthase in Acetobacter xylinum, Proceedings Of The National Academy Of Sciences Of The United States Of America, nr.96; 14-18. DOI:10.1073/pnas.96.1.14
- 16. PARK J.K., PARK Y.H. , JUNG J.Y., 2003: Production of bacterial cellulose by Gluconacetobacter hansenii PJK isolated from rotten Apple. Biotechnology and Bioprocess Engineering nr.8, Article number: 83
- 17. ROZENBERGA L., SKUTE M., BELKOVA L., SABLE I., VIKELE L., SEMJONOVS P., SAKA M., RUKLISHA M., PAEGLE L., 2016: Characterisation of films and 43 nanopaper obtained from cellulose synthesised by acetic acid bacteria, Carbohydrate Polymers nr.144; 33-40. DOI: 10.1016/j.carbpol.2016.02.025
- 18. SHARMA CH., BHARDWAJ N.K., 2019: Biotransformation of fermented black tea into bacterial nanocellulose via symbiotic interplay of microorganisms, International Journal of Biological Macromolecules nr. 132; 166-177. DOI: 10.1016/j.ijbiomac.2019.03.202
- 19. STANISŁAWSKA A., 2016: Bacterial nanocellulose as a microbiological derived nanomaterial; Advances in Materials Science nr 16; 4. DOI: 10.1515/adms-2016-0022
- 20. TAHARA, N., TABUCHI, M., WATANABE, K., YANO, H., MORINAGA, Y., YOSHINAGA, F., 2014 : Degree of polymerization of cellulose from Acetobacter xylinum BPR2001 decreased by cellulase produced by the strain, Bioscience, Biotechnology, and Biochemistry nr. 61(11), 1862-1865. DOI: 10.1271/bbb.61.1862
- 21. VANDAMME E.J., BAETS S.DE, VANBAELEN A., JORIS K., WULF P.DE., 1997: Improved production of bacterial cellulose and its application potential, Polymer Degradation and Stability nr. 59; 93-99. DOI: 10.3390/ma15031054
- 22. WACIKOWSKI B., MICHAŁOWSKI M., 2020: The possibility of using bacterial cellulose in particleboard technology, Annals of WULS SGGW Forestry and Wood Technology nr. 109; 16-23. DOI:10.5604/01.3001.0014.3046
- 23. ZHANG H., XU X. , CHEN C., CHEN X., HUANG Y., SUN D., 2018: In situ controllable fabrication of porous bacterial cellulose. Materials Letters nr.249 104–107. DOI: 10.3390/ijms21186532
- 24. ZIKMANIS P., KOLESOVS S., RUKLISHA M., SEMJONOVS P., 2021: Production of bacterial cellulose from glycerol: the current state and perspectives, Bioresources and Bioprocessing nr.8; 116. DOI: 10.1186/s406443-021-00468-1
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60d4a10e-77e3-4bad-a6ce-ab502b617cd7