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Abstract: Jatropha curcas plant is greatly impaired by mosaic
disease, caused by the viruses (Begomovirus), transmitted by white-
flies, which act as the vector. Roguing (i.e. removal of infected plant)
and spraying of insecticides are common methods, employed in order
to get rid of the disease. In this article, a mathematical model has
been developed to study the mosaic disease dynamics while consid-
ering preventive measures of roguing and insecticide spraying. Suffi-
cient conditions for the stability of equilibrium points of the system
are among the results obtained through qualitative analysis. We ob-
tain the basic reproduction number R0 and show that the disease
free system is stable for R0 < 1 and unstable for R0 > 1. The region
of stability of equilibrium points in different parameter spaces have
also been analysed. Hopf bifurcation at the endemic steady state has
been studied subsequently, as well. Finally, by formulating an op-
timal control problem, optimal application of roguing and spraying
techniques has been determined, keeping in mind the cost effective
control of the mosaic disease. Pontryagin minimum principle has
been utilized to solve the optimal control problem. Numerical sim-
ulations illustrate the validity of the analytical outcomes.
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1. Introduction

A vector borne plant disease, namely, in this case, the mosaic disease, is an
important constraint to crop production worldwide, causing serious losses in
yield and quality of food (Chakraborty and Newton, 2011). Jatropha curcas
L. (known as physic or purging nut) is a multipurpose and drought resistant
crop and is grown in marginal lands with lesser input. Jatropha plants natively
occur in tropical and subtropical areas of India, Africa and North America.
Jatropha curcas is easily affected by mosaic virus Begomovirus (Melgarejo et
al., 2015; Mulenga et al., 2016). It heavily affects the Jatropha plants, causing
leaf damage, such as yellowing of leaves and sap drainage and, in particular, the
fruits of the plant are also affected. It is responsible, as well, for a reduction
in the production of seeds. This plant virus is transmitted by infected vectors
- whiteflies Bemisia tabaci (Gennadius), (Priya and Selvan, 2006; Basir et al.,
2017).

One possible protection method of the Jatropha curcas plants from the mo-
saic virus is to control these vectors - whiteflies. This can be achieved through
spraying of insecticides on the plant (Makkouk et al., 2014; Venturino et al.,
2016; Roy et al., 2015). Viral disease in a plant population can also be controlled
with roguing of infected plants and replanting (replacing the infected palnts with
healthy ones), see Basir and Roy (2017), Jeger et al. (2004), Jeger and Chan
(1994), Allen (1978), Holt and Chancellor (2006), Thresh et al. (2005).

Roy et al. (2015), as well as Venturino et al. (2016), have studied the dy-
namics of mosaic disease in Jatropha curcas plants using different mathematical
models. In both these articles, the authors have considered insecticide as the dis-
ease controlling agent. Basir and Roy (2017) have studied the effect of roguing
in controlling mosaic disease in Jatropha plant. In this present study, consider-
ation of both roguing and spraying as controlling factors as well as investigation
of the dynamics of the disease have been carried out. The basic reproduction
number, essential for the analysis of the disease dynamics, has been determined
as a result of this investigation.

The basic reproduction number, R0, is defined as the expected number of
secondary cases, caused by introduction of one infected individual into the native
population. It is a measure of the success of invasion in a population. R0

is a threshold quantity, where for the value of R0 higher than 1 (R0 > 1),
an outbreak of the infectious agent is possible if the pathogen is introduced;
whereas if R0 is below 1 (R0 < 1), the infection will wither away (Diekmann
and Heesterbeek, 2000; Anderson et al., 1990). When an outbreak is possible,
then R0 is also a measure of the risk that an outbreak will actually occur. It
determines the fraction of the population that needs to be controlled in order
to avoid an outbreak. A method exists in mathematical biology literature to
characterize R0 even in systems with definite complexity: the next-generation
matrix method (Diekmann et al., 1990). This approach has the advantage of
providing an estimate of R0 and the elements of the next-generation matrix
have a clear biological basis.
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It has been previously observed that the Indian Cassava mosaic virus can
cause the mosaic disease in Jatropha curcas plant (Kashina et al., 2013; Ramkat
et al., 2011), while the phylogenetic nature of Cassava and Jatropha are not
the same, thus their growth and death rates differ, but the plantation methods
are very similar. For this reason, we have estimated some of the parameter
values from the available literature (Venturino et al., 2016; Halt et al., 1997) for
numerical simulations.

This article is organised as follows: in the next section, a mathematical model
is formulated for mosaic disease in Jatropha curcas plant with consideration of
roguing and spraying. Existence and stability of equilibria and Hopf bifurcation
are studied in Section 3. Optimal roguing and spraying is obtained for cost
effective control of mosaic disease by formulating and solving an optimal control
problem in Section 4. Finally, in Section 5, we provide discussion of our results
with a conclusion.

2. The mathematical model

Jatropha curcas mosaic disease is caused by mosaic virus. The virus is carried
through the whitefly vector. Therefore, we only consider the vector popula-
tion in the study of the mosaic disease dynamics. Let y(t) and v(t) denote the
infected plant and infected whitefly populations, respectively, and their corre-
sponding healthy counterparts are denoted by x(t) and u(t). Logistic growth is
assumed for healthy plant population due to finite area of plantation with r as
the growth rate of plant density and k as the maximum plant density. Let λ
be the contact rate from an infected vector with respect to a susceptible plant,
while β is the rate of disease transmission from an infected plant to a healthy
whitefly, and m is the sum of the natural and virus-related mortalities of the
infected plants. Further, a is the maximum vector abundance on a plant and b
is the healthy vector growth rate, while µ is the mortality of vector population.

Roguing or removal of infected plant and spraying of insecticides are con-
sidered as the mosaic disease control measures. It is assumed that cutting is
proportional to the density of the infected plant, y(t), at the maximum rate h.
On the other hand, insecticide affects both the infected and uninfected vectors
by increasing their death rate by a constant, c.

From the above assumption the following model is obtained:

dx

dt
= rx

(

1− x+ y

k

)

− λxv, (1)

dy

dt
= λxv −my − hy,

du

dt
= b(u+ v)

(

1− u+ v

a(x+ y)

)

− βuy − cu,

dv

dt
= βuy − µv − cv.
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with the initial conditions:

x(0) > 0, y(0) > 0, u(0) > 0, v(0) > 0. (2)

Remark: We do not consider the case when x + y = 0, otherwise this
study would be meaningless. Also, c can be considered to represent the rate of
spraying on the plantation.

The region of attraction is given by the set

D = {(x, y, u, v) ∈ R
4
+ : 0 ≤ x+ y ≤ M, 0 ≤ u+ v ≤ aM}

where M = max {J(0), k}, J(t) being the total plant volume at any time t,
and the region is positively invariant, attracting all solutions initiating inside
the interior of the positive octant and all the solutions are bounded therein.

Table 1. Values of the parameters used in the numerical simulations (Venturino
et al., 2016; Holt et al., 1997)

Parameters Definition Values
r growth rate of plant 0.1 day−1

k density of healthy plants 1 m−2

λ plant infection rate 0.002 vector−1 day−1

m infected plant death rate 0.03 day−1

b vector growth rate 0.8 day−1

β vectors infection rate 0.12 plant−1day−1

a maximum vector abundance 100 plant−1

µ vector mortality rate 0.12 day−1

3. Stability of the equilibria

In this section, we have analyzed the dynamics of the system with constant
control.

3.1. Equilibria and stability

There are only three possible equilibria for system (2):

i) the infected plant-vector-free equilibrium E1 = (k, 0, 0, 0),

ii) the disease-free equilibrium E2 = (k, 0, ak, 0),

iii) and the endemic equilibrium E∗ = (x∗, y∗, u∗, v∗),
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where

x∗ =
−A+

√
A2 − 4B

2
y∗ =

rx∗(k − x∗)

ak + rx∗

u∗ =
mc

βλx∗
, v∗ =

mr(k − x∗)

λ(mk + rx∗)
, (3)

with A =
−mbr(λβ + c)

kλβa(m+ r)(b − c) +mbβr
and B =

Amck

rkβ + rc
.

The Jacobian at any point (x, y, u, v) is:

M = [mij ] =





















m11 − rx
k

0 −λx

λv −m− h 0 λx

b(u+v)2

a(x+y)2 − βu+ b(u+v)2

a(x+y)2 b− βy − 2b(u+v)
a(x+y) − c b− 2b(u+v)

a(x+y)

0 βu βy −µ− c





















,

where m11 = r[1 − (2x+y)
k

]− λv.

Lemma 1 The infected plant-vector-free system is unstable.

Proof: Eigenvalues of the Jacobian matrix at E1 are r, −m− h, b− c, −µ− c.
Thus, the equilibrium E1 is unstable.
We have also the following lemma.

Lemma 2 The system (2) is stable at the disease-free equilibrium, E2, if R0 < 1
and becomes unstable if R0 > 1.

Proof: At E2, M consists of two eigenvalues, which are easily obtained as −b
and −r and the remaining characteristic equation is:

ξ2 − (m+ h+ µ+ c)ξ + (µ+ c)(m+ h)− ak2βλ = 0, (4)

and its roots are negative or have negative real parts if m+h+µ+ c > 0, which
is obvious, and (µ+ c)(m+ h)− ak2βλ > 0.

Thus, E2 is stable if

(µ+ c)(m+ h)− ak2βλ > 0

and unstable if
(µ+ c)(m+ h)− ak2βλ < 0.
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Figure 1. Region of stability of the disease free steady state E2 in (c − h)
space. Colour bar denotes the values of R0 (for interpretation of the references
to colours in the figure, the Reader is asked to consult the web version of the
paper). Other parameter values are taken as in Table 1. For R0 < 1, E2 is
stable

From the above discussion we can determine the basic reproduction number,
R0, as follows:

R0 =
ak2βλ

(µ+ c)(m+ h)
. (5)

3.2. Stability of endemic equilibria E∗

At E∗ the characteristic equation is given by:

ρ4 + σ1ρ
3 + σ2ρ

2 + σ3ρ+ σ4 = 0, (6)

where σi, i = 1, 2, 3, 4 are given by:

σ1 = −(m11 +m22 +m33 +m44),

σ2 = m44(m33 +m22) +m11m44 −m34m43 −m24m42

+m22m33 +m11(m33 +m22)−m12m21,

σ3 = −m33m44(m22 +m11)−m44(m11m22 −m12m21) +m34m43(m22 +m11)

−m24m32m43 −m14m31m43 +m24m42(m33 +m11)

−m14m21m42 −m33(m11m22 −m12m21),

σ4 = m33m44(m11m22 −m12m21)−m34m43(m11m22 −m12m21)

+m32m43(m11m24 −m14m21)−m31m43(m12m24

−m14m22)−m33m42(m11m24 −m14m21). (7)
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Figure 2. Numerical solution of the system (2) for λ = 0.002 (dotted line)
and λ = 0.013 (solid line), while the other parameters are same as in Table 1
(without control i.e. h = 0, c = 0). System is stable at lower infection

and

m14 = −λx∗, m21 = λv∗, m22 = −(m+ h),

m12 = −rx∗

k
, m24 = λx∗, m31 =

b(u∗ + v∗)2

a(x∗ + y∗)2
,

m32 = −βu∗ +
b(u∗ + v∗)2

a(x∗ + y∗)2
,

m33 = b− βy∗ − 2b(u∗ + v∗)

a(x∗ + y∗)
, m34 = b− 2b(u∗ + v∗)

a(x∗ + y∗)
− c, m42 = βu∗,

m11 = −x∗

k
, m44 = −(µ+ c), m43 = βy∗.

In this context, according to the Routh-Hurwitz criterion, the E∗ is stable if
the following conditions are satisfied:

σ1 > 0, σ4 > 0,

σ1σ2 − σ3 > 0, and

σ1σ2σ3 − σ2
3 − σ4σ

2
1 > 0. (8)

3.3. Hopf bifurcation analysis

For the possible occurrence of Hopf bifurcations in the system (1) at the en-
demic equilibrium E∗, we consider α ∈ R as the general bifurcation parameter.
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Figure 3. Region of stability of the endemic steady state E∗ in (a) (λ− c) space
with h = 0, (b) (λ − h) space with c = 0. Colour bar denotes max[Re(ρ)],
ρ is the characteristic root of equation (7) (for interpretation of the references
to colours in the figure, the Reader is asked to consult the web version of the
paper). Other parameter values are the same as in Table 1. In the white region,
E∗ does not exist

Using the last condition of (8), we define φ : (0,∞) → R as a continuously
differentiable function of α:

φ(α) := σ1(α)σ2(α)σ3(α)− σ2
3(α)− σ4(α)σ

2
1(α).

Hopf bifurcation will occur if the characteristic equation (6) has a pair of com-
plex eigenvalues ρ(α∗), ρ̄(α∗) such that

Reρ(α∗) = 0, Imρ(α∗) = ω0 > 0, (9)

and the transversality condition

dReρ(α)

dα

∣

∣

∣

∣

α∗

> 0

is satisfied. Furthermore, all other eigenvalues must have negative real parts.
Thus, we have the following theorem:

Theorem 1 The endemic equilibrium E∗ enters into Hopf bifurcation at α =
α∗ ∈ (0,∞) if and only if φ(α∗) = 0 and

σ3
1σ

′
2σ3(σ1 − 3σ3) > 2(σ2σ

2
1 − 2σ2

3)(σ
′
3σ

2
1 − σ′

1σ
2
3) (10)

and all other eigenvalues have negative real parts, where ρ(α) is purely imaginary
at α = α∗.

Proof: Using conditions (10), the characteristic equation (6) can be equiv-
alently rewritten in the form

(

ρ2 +
σ3

σ1

)(

ρ2 + σ1ρ+
σ1σ4

σ3

)

= 0. (11)
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Figure 4. Region of stability of the endemic steady state E∗ in (c − h) space.
Colour bar denotes max[Re(ρ)], ρ is the characteristic root of equation (7) (for
interpretation of the references to colours in the figure, the Reader is asked to
consult the web version of the paper). Other parameter values are taken as in
Table 1. In the white region, E∗ does not exist

Figure 5. Numerical solution of the system (2) for the values of parameters as
in Table 1 (without control, λ = 0.02)

Two roots of this equation are given by

ρ1,2 = ±iω0, ω0 =

√

σ3

σ1
,
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while the other two roots, ρ3 and ρ4, satisfy the equation

ρ2 + σ1ρ+
σ1σ4

σ3
= 0,

and from the Routh-Hurwitz criterion, they both have a negative real part.
To verify the transversality condition, we first note that Φ(α∗) is a continuous

function of its argument, and hence there exists an open interval

α ∈ (α∗ − ǫ, α∗ + ǫ)

where ρ1 and ρ2 are complex conjugate roots of the characteristic equation,
which can be written in the general form as

ρ1,2(α) = ζ(α) ± iν(α),

with ρ1,2(α
∗) = ±iω0.

Substituting ρj(α) = ζ(α) ± iν(α) into the characteristic equation (6), dif-
ferentiating with respect to α and separating real and imaginary parts gives

P (α)ζ′(α) −Q(α)ν′(α) +R(α) = 0, (12)

Q(α)ζ′(α) + P (α)ν′(α) + S(α) = 0,

where

P (α) = 4ζ3 − 12ζν2 + 3σ1(ζ
2 − ν2) + 2σ2ζ + σ3,

Q(α) = 12ζ2ν + 6σ1ζν − 4ζ3 + 2σ2ζ,

R(α) = σ1ζ
3 − 3σ′

1ζν
2 + σ′

2(ζ
2 − ν2) + σ′

3ζ,

S(α) = 3σ′
1ζ

2ν − σ′
1ν

3 + 2σ′
2ζν + σ′

3ζ.

Solving the system (12) for ζ′(α∗) and using the condition (10) yields
[

dRe[ρj(α)]

dα

]

α=α∗

= ζ′(α∗) = −Q(α∗)S(α∗) + P (α∗)R(α∗)

P 2(α∗) +Q2(α∗)

=
σ3
1σ

′
2σ3(σ1 − 3σ3)− 2(σ2σ

2
1 − 2σ2

3)(σ
′
3σ

2
1 − σ′

1σ
2
3)

σ4
1(σ1 − 3σ3)2 + 4(σ2σ2

1 − 2σ2
3)

2
6= 0.

Thus, the transversality condition holds, and, consequently, a Hopf bifurcation
occurs at α = α∗.

Based on the analytical outcomes above, we perform some numerical sim-
ulations. We take x(0) = 0.4, y(0) = 0.1, u(0) = 10, v(0) = 5 as initial
conditions.

Region of stability of the disease free equilibrium, E2, is shown in Fig. 1, in
c− h space. For R0 < 1, the disease free steady state, E2, is stable. At R0 > 1,
this state loses its stability and the system becomes endemically infected and



Controlling mosaic disease in Jatropha curcas 335

the endemically infected steady state can be either stable, or unstable. The
time series solution of system (2), without roguing and spraying, is shown in
Fig. 2, with parameter values as in Table 1. Here, R0 > 1 and the endemic
steady state E∗ exists and is stable for lower value of infection rate (λ = 0.002)
and unstable for higher value of infection rate. Periodic solution is observed for
(λ = 0.013).

Figure 3 shows that both roguing (h) and spraying (c) can affect the system,
especially with regard to stability of E∗, for λ = 0.02 and other parameters
from Table 1. Colour code represents the maximum value of the real parts of
roots of the characteristic equation (for colour code interpretation a Reader is
referred to the web version of the article). In yellow region the value is positive
i.e. the system is unstable and in green area the value is negative, meaning that
the system is stable. Hopf bifurcating periodic solution can be observed on the
boundary of the two regions.

Figures 1-3 show that λ, c and h are the most important parameters. Sta-
bility switches of endemic equilibrium, E∗, depend on these parameters. When
one considers the effects of disease transmission rate, λ, as shown in Fig. 3, for
lower values of h and c, the endemic steady state is unstable. On the other hand,
for higher values of c or h, E∗ has a stabilizing role. As c or h increases, the
critical value of λ, at which the Hopf bifurcation occurs, is increasing, but this
effect reverses starting with some value of c or h. Periodic solution is observed
for h = 0.05 and c = 0.05 ; the system is asymptotically stable for h = 0.2 and
c = 0.1 when taking λ = 0.02 (see Fig. 5).

4. The Optimal Control Problem (OCP)

In this section, an optimal control problem is formulated aimed to minimize
the costs involved in insecticide spraying and roguing. It is assumed that all
the vectors of a particular region fall possibly under the control of spraying
of insecticide. We reformulate the model system (2) introducing the control
0 ≤ γi(t) ≤ 1, i = 1, 2 as follows:

dx

dt
= rx

(

1− x+ y

k

)

− λxv, (13)

dy

dt
= λxv −my − γ1hy,

du

dt
= b(u+ v)

(

1− u+ v

a(x+ y)

)

− βuy − γ2cu,

dv

dt
= βuy − µv − γ2cv.

with initial conditions: x(0) > 0, y(0) > 0, u(0) > 0, v(0) > 0.

Control parameter γ1 corresponds to the control of roguing and γ2 is for the
control on spraying. For γi ≈ 0, i = 1, 2, there is no control input on infected
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plant and vectors, while γi ≈ 1, i = 1, 2, implies the maximum use of control.

The cost function is taken in a quadratic form to ensure the existence of
both optimal spraying and roguing, as follows:

Jc(γ(t)) =

∫ tf

0

[Py +Rγ1(t)
2 + Sγ2(t)

2]dt. (14)

Here, P,R, S are positive constants. The objective functional is taken in such
a way that we can account for the costs of spraying and roguing, as expressed
by the last two terms inside the integral. Here, the objective is to minimize the
cost by finding a suitable pair γi(t), i = 1, 2. In this way, the costs of insecticide
spraying and roguing can be accounted for in designing the optimal protection
control. Also, the damage of the crop due to infected plants, whose presence
needs to be minimized, has been expressed by the first term.

Hence, the objective is to find the optimal control pair γ∗(t) = (γ∗
1 (t), γ

∗
2 (t))

such that

Jc(γ
∗
1 , γ

∗
2 ) = min (J(γ1, γ2) : (γ1, γ2) ∈ U) where U = U1 × U2,

U1 = (γ1(t) : γ1 is measurable and 0 ≤ γ1 ≤ 1, t ∈ [0, tf ]) and
U2 = (γ2(t) : γ2 is measurable and 0 ≤ γ2 ≤ 1, t ∈ [0, tf ]).

For this, Pontryagin Minimum Principle (Fleming and Rachel, 1975) has
been used to find the optimal control pair (γ∗

1 (t), γ∗
1 (t)). To solve the optimal

control problem, we take the Hamiltonian as:

H = Py2 +Rγ1(t)
2 + Sγ2(t)

2 + ξ1

[

rx
(

1− x+ y

k

)

− λxv
]

+ξ2[λxv −my − γ1hy] + ξ3

[

b(u+ v)[1− u+ v

a(x+ y)

]

(15)

−βuy − γ2cu] + ξ4[βyu− µv − γ2cv],

where the ξi, i = 1, . . . , 4 are adjoint variables.

By applying the Pontryagin Minimum Principle for the existence of the
optimal control, we obtain the following theorem:

Theorem 2 If the given optimal control pair γ∗
i (t), i=1,2, and the solution (x∗,

y∗, u∗, v∗) of the corresponding system (8) minimize J(γ) over U , then there
exist the adjoint variables ξ1, ξ2, ξ3, ξ4, which satisfy the following equations:
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dξ1
dt

= −ξ1r

(

1− 2x+ y

k

)

+ ξ1λv − ξ2λv − ξ3
b(u+ v)2

a(x+ y)2
, (16)

dξ2
dt

= −2Py +
ξ1rx

k
+ ξ2(m+ γ1h)− ξ3

b(u+ v)2

a(x+ y)2
− ξ4βu,

dξ3
dt

= ξ3b

(

1− 2(u+ v)

a(x+ y)

)

+ξ3(βy + γ2c)− ξ4βy,

dξ4
dt

= ξ1λx − ξ2λx − ξ3b

(

1− 2(u+ v)

a(x+ y)

)

+ξ4(µ+ γ2c),

with the transversality condition satisfying ξi(tf ) = 0, i = 1, . . . , 4. Moreover,
the optimal control policy is given by:

γ∗
1(t) = max

{

0,min

{

1,
hyξ2
2R

}}

, (17)

γ∗
2(t) = max

{

0,min

{

1,
c(ξ3u+ ξ4v)

2S

}}

. (18)

Proof: Applying the Pontryagin Minimum Principle, we can posit that the
optimal control variable γ∗(t) satisfies:

∂H

∂γ∗(t)
= 0. (19)

From (15) and (19) we can get the following expression for γ1 and γ2:

γ∗
1(t) =

hyξ2
2R

,

γ∗
2(t) =

c(ξ3u+ ξ4v)

2S
.

For the boundedness of the optimal control, we have

γ∗
1(t) = max

{

0,min

{

1,
hyξ2
2R

}}

,

γ∗
2(t) = max

{

0,min

{

1,
c(ξ3u+ ξ4v)

2S

}}

.

According to Pontryagin Minimum Principle (Pontryagin et al., 1986), ad-
joint variables satisfy the relations:

dξi
dt

= −∂H

∂si
, i = 1, 2, 3, 4, (20)

where si ≡ (x, y, u, v) and the necessary conditions to be satisfied by the optimal
control pair γ∗(t) are

H(si(t), γ
∗(t), ξi(t), t) = min

u∈U
(H(xi(t), γ(t), ξi(t), t)), i = 1, 2, 3, 4. (21)
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The above equations are the necessary conditions that are satisfied by the opti-
mal control γ(t) and also the state variables of the system. From (15) we have
the following equalities:

dξ1
dt

= −∂H

∂x
,

dξ2
dt

= −∂H

∂y
,

dξ3
dt

= −∂H

∂u
,

dξ4
dt

= −∂H

∂v
. (22)

From the set of equations (22), equations (16) can be obtained. Thus, equations
(14), (17), (18) and (19) represent the optimal system. This system is a two
point boundary value problem. The state system, system (14), is an initial value
problem, and adjoint system (17) is a boundary value problem with boundary
ξi(tf ) = 0, i = 1, 2, 3, 4.

The optimal control problem, formulated above, is a two point boundary value
problem. State equation is an initial value problem and adjoint equation sys-
tem is a boundary value problem. We solve the OCP using the code given in
Appendix A. The code is developed from the article by Wang (2009). Here,
we fixed the final time and obtain the optimal profile of roguing and spraying.

Figure 6. Effect of optimal roguing and optimal spraying on the system (2)

Based on the analytical outcomes above, again some numerical simulations
for the OCP have been performed. Like before, x(0) = 0.4, y(0) = 0.1, u(0) =
10, v(0) = 5 are taken as initial conditions for the OCP. Also, P = 0.1, R = 0.01.
The values have been varied and it was observed that these are sensitive param-
eters, but the respective results are not shown in the figures.

The effect of optimal control on the system is shown in Fig. 6. We apply
the control through roguing and insecticide spraying for a time period of 100
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Figure 7. Optimal control pair is plotted as function of time.

days. In this figure, we notice that due to the application of the optimal control
pair (γ∗

1 , γ
∗
2 ), healthy plant population achieves its maximum value in 100 days

and the infected plant volume is also minimized in this time period. Non-
infected vector population increases initially, but due to the use of insecticide it
ultimately decreases. Infected vector population is reduced significantly within
100 days and finally tends to extinction.

It has also been observed that initially roguing is required for fifty days.
Also, control through spraying for the first 40 days of the disease outbreak
(see Fig. 7) is required, and the cost is also minimized through the optimal
control policy. Optimal control policy, implemented through the use of both
roguing and insecticide spraying exerts great influence in terms of making the
system disease free and maintaining the stable nature in the remaining time
period. Figure 7 shows that optimal roguing and spraying is needed to control
the mosaic virus and to minimize the cost of cultivation. Hence, optimal levels
of roguing and insecticide can be applied on the host plants systematically to
eradicate the disease.

5. Discussion and conclusion

Jatropha curcas is considered to be the most suitable alternative renewable
energy resource owing to its capacity to produce biodiesel from its oil (Roy et
al., 2014; Al Basir et al., 2015). The plant is infected severely by mosaic virus
which is carried by the whitefly vector. Insecticide spraying can remove the
vector from the plantation (Roy et al., 2015), but excessive use of insecticides is
harmful to the environment. The disease can be controlled with roguing, but it
is much more time consuming. Therefore, we adopted both of these techniques,
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i.e. roguing and spraying, to eradicate the disease in order to ensure smooth
supply of Jatropha oil to the industry for biodiesel production. Thus, the main
aim of this study is to analyse how roguing and spraying can affect the dynamics
of mosaic disease.

A nonlinear mathematical model is formulated to study Jatropha curcas
plant mosaic disease dynamics, considering roguing and spraying as controlling
strategies. The model exhibits three equilibria, explicitly: (i) the disease and
vector free, (ii) disease-free, and (iii) endemic equilibrium. The region for stabil-
ity of disease-free equilibrium has been shown. The system is stable for R0 < 1
and unstable if R0 > 1. For endemic steady state, the region of stability is also
shown in the figures. Finally, the analysis of the optimal control problem shows
that optimal spraying and roguing can make the system free of disease, in a cost
effective way.

Another factor that can be included in the plantation system is the use of
nutrients. The use of nutrients along with spraying and rouging gives yet more
fruitful results (Eraslan et al., 2007; Perring et al., 1999). It helps the plants to
recover from disease quickly by increasing their growth rate (Dordas, 2008). If
N is the amount of nutrient used, then the effect of nutrient can be incorporated
in the model by modifying the growth rate r as follows:

r = r0[1 + a/(1 + exp{−b(N − c)}]

where a, b, c are constants. Nutrients facilitate faster crop growth and are ben-
eficial when used in small controlled quantities, but can also lead to plant defi-
ciency and cause plant death due to toxicity, when large amounts of nutrients
are applied.

In conclusion, while predicting the future course of an epidemic outbreak,
for purposes of controlling the mosaic disease, the potential impact of roguing
and spraying must be considered. Also, optimal control theory can be applied
for determining cost effective conduct of the control process. In a nutshell, the
modeling approach and optimal control problem, presented here, can serve as
an integrating measure to identify and design the appropriate disease control
strategies.
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Appendix A

Matlab code for solving the OCP:

function Optimal−control−problem

solinit = bvpinit([0 100], [0.4 0.1 10 5 0 0 0 0]); % initial guess

options = bvpset(’Stats’,’on’,’RelTol’,1e-10);
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global R P Q h c S

h=0.2; c=0.1; R=.01; P=0.1; S=0.01;
sol = bvp4c(@BVP−ode, @BVP−bc, solinit, options);

t = sol.x; y = sol.y;

u1 =max(min(((h.*y(2,:).*y(6,:))/R),1),0);

u2 =max(min(((c.*(y(7,:).*y(3,:)+y(4,:).*y(8,:)))/S),1),0);

n = length(t);

% calculation of cost

J=0.5*(P*y(2,:)+R*u1*u1’+S*u2*u2’)/n;

FinalCost = strcat(’Final cost is: J=’,num2str(J(end,1)))

function dydt = BVP−ode(t,y)

global a b r k lambda c beta m delta P Q R S mu h

r =0.1; lambda=0.02; a =100; b =0.8;

beta =0.12; k =1; m =0.03; mu =0.12 ;

%calculation of optimal control
u1 =max(min(((h.*y(2,:).*y(6,:))/R),1),0);

u2 =max(min(((c.*(y(7,:).*y(3,:)+y(4,:).*y(8,:)))/S),1),0);

dydt=[%state equation

r*y(1)*(1-(y(1)+y(2))/k)-lambda*y(1)*y(4);

lambda*y(1)*y(4)-(m+u1*h)*y(2);

b*(y(3)+y(4))*(1-(y(3)+y(4))/(a*(y(1)+y(2))))-beta*y(3)*y(4)-u2*c*y(3);

beta*y(3)*y(4)-u2*c*y(4)-mu*y(4);

% adjoint equation

-(y(4)*r*(1-(2*y(1)+y(2)/k))-y(5)*lambda*y(4)+y(6)*lambda*y(4)...

+y(7)*(b*(y(3)+y(4))2/(a ∗ (y(1) + y(2))2)));
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-2*P*y(2)-(-y(5)*r*y(1)/k-y(6)*(m+u1*h)...

+y(7) ∗ (b ∗ (y(3) + y(4))2/(a ∗ (y(1) + y(2))2)) + y(8) ∗ beta ∗ y(3));

y(7)*2*b*(1-(y(3)+y(4))/(a*(y(1)+y(2))))+y(7)*(beta*y(2)+u2*c)-y(8)*beta*y(2);

lambda*y(5)*y(1)-(y(6)*y(1)+y(7)*2*b*(1-(y(3)+y(4))/(a*(y(1)...

+y(2))))+y(8)*(mu+u2*c))];

function res = BVP−bc(ya,yb)

% boundary conditions

res = [ ya(1) - 0.4

ya(2) - 0.1

ya(3) - 10

ya(4) - 5

ya(5) - 0

yb(6) - 0

yb(7) - 0

yb(8) - 0 ];


