Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Analiza bezpiecznego dystansu epidemicznego w autobusach transportu publicznego: badanie symulacyjne przepływu pasażerów
Języki publikacji
Abstrakty
During the COVID-19 pandemic, public transport played a crucial role in maintaining essential services while ensuring the safety of both passengers and staff. As the world gradually resumes operations, the impact of the pandemic is expected to persist for some time. Existing studies focus on virus transmission in vehicles, with limited knowledge about post-pandemic passenger flow, safety, and satisfaction. This paper presents a model of passenger movement in public transport, considering factors like boarding times, movement within stops, and the impact of crowding and delays. To reduce transmission at bus stops, we developed a simulation-based passenger flow model using PTV Vissim. The program was used to simulate passenger exchange scenarios, using data collected from real data. The goal was to create a model that minimizes the risk of infection. By understanding passenger flow and interactions with the public transport system, effective measures can be implemented to mitigate the spread of COVID-19 and other infectious diseases.
Podczas pandemii COVID-19 transport publiczny odegrał kluczową rolę w utrzymaniu podstawowych usług, zapewniając jednocześnie bezpieczeństwo zarówno pasażerów, jak i personelu. W miarę jak świat stopniowo wznawia działalność, oczekuje się, że skutki pandemii utrzymają się przez jakiś czas. Istniejące badania koncentrują się na przenoszeniu wirusów w pojazdach, przy ograniczonej wiedzy na temat przepływu pasażerów, bezpieczeństwa i satysfakcji po pandemii. W artykule przedstawiono model poruszania się pasażerów w transporcie publicznym, biorąc pod uwagę takie czynniki, jak czas wejścia do pojazdu, ruch w obrębie przystanków oraz wpływ zatłoczenia i opóźnień. Aby ograniczyć przekazywanie zakażeń na przystankach autobusowych, opracowaliśmy model przepływu pasażerów oparty na symulacji przy użyciu PTV Vissim. W programie przeprowadzono symulację scenariuszy wymiany pasażerów, wykorzystując dane zebrane z danych rzeczywistych. Celem było stworzenie modelu, który minimalizuje ryzyko infekcji. Rozumiejąc przepływ pasażerów i interakcje z systemem transportu publicznego, można wdrożyć skuteczne środki ograniczające rozprzestrzenianie się Covid-19 i innych chorób zakaźnych.
Wydawca
Czasopismo
Rocznik
Tom
Strony
3--7
Opis fizyczny
Bibliogr. 37 poz., rys., zdj.
Twórcy
autor
- Silesian University of Technology
autor
- Silesian University of Technology
autor
- Silesian University of Technology
autor
- Motor Transport Institute
Bibliografia
- 1. Bagloee, S.A. and Ceder, A.A. (2011) ‘Transit-network design methodology for actual-size road networks’, Transportation Research Part B: Methodological, 45(10), pp. 1787-1804.
- 2. Berardi, C. et al. (2020) ‘The COVID-19 pandemic in Italy: Policy and technology impact on health and non-health outcomes’, Health policy and technology, 9(4), pp. 454-487.
- 3. Burdzik, R. (2021) Epidemic Risk Analysis and Assessment in Transport Services: COVID-19 and Other Viruses. CRC Press.
- 4. Burdzik, R. (2023) ‘An Application of the DHI Methodology for a Comparison of SARS-CoV-2 Epidemic Hazards in Customer Delivery Services of Smart Cities’, Smart Cities, 6(2), pp. 965-986.
- 5. Burdzik, R., Chema, W. and Celiński, I. (2023) ‘A study on passenger flow model and simulation in aspect of COVID-19 spreading on public transport bus stops’, Journal of Public Transportation, 25, p. 100063.
- 6. Burdzik, R. and Speybroeck, N. (2023) ‘Study on the estimation of SARS-CoV-2 virus pathogens’transmission probabilities for different public bus transport service scenarios.’, Transport Problems: an International Scientific Journal, 18(3).
- 7. Cartenì, A., Di Francesco, L. and Martino, M. (2021) ‘The role of transport accessibility within the spread of the Coronavirus pandemic in Italy’, Safety science, 133, p. 104999.
- 8. Chen, C. et al. (2022) ‘Investigating the effectiveness of COVID-19 pandemic countermeasures on the use of public transport: A case study of The Netherlands’, Transport policy, 117, pp. 98-107.
- 9. Chen, X., Xia, E. and He, T. (2020) ‘Influence of traveller risk perception on the willingness to travel in a major epidemic’, International Journal of Sustainable Development and Planning, 15(6), pp. 901-909.
- 10. Davalbhakta, S. et al. (2020) ‘A systematic review of smartphone applications available for corona virus disease 2019 (COVID19) and the assessment of their quality using the mobile application rating scale (MARS)’, Journal of medical systems, 44, pp. 1-15.
- 11. Edwards, N.J. et al. (2021) ‘Reducing COVID-19 airborne transmission risks on public transportation buses: An empirical study on aerosol dispersion and control’, Aerosol Science and Technology, 55(12), pp. 1378-1397.
- 12. Herendy, C. (2020) ‘How were apps developed during, and for, COVID-19?: An investigation into user needs assessment and testing’, in. 2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), IEEE, pp. 000503-000508.
- 13. Hu, M. et al. (2021) ‘Risk of coronavirus disease 2019 transmission in train passengers: an epidemiological and modeling study’, Clinical Infectious Diseases, 72(4), pp. 604610.
- 14. Khuroo, Mohammad S et al. (2020a) ‘COVID-19 vaccines: a race against time in the middle of death and devastation!’, Journal of clinical and experimental hepatology, 10(6), pp. 610621.
- 15. Kłos-Adamkiewicz, Z. and Gutowski, P. (2022) ‘The Outbreak of COVID-19 Pandemic in Relation to Sense of Safety and Mobility Changes in Public Transport Using the Example of Warsaw’, Sustainability, 14(3), p. 1780.
- 16. Li, P. et al. (2022) ‘Risk assessment of COVID-19 infection for subway commuters integrating dynamic changes in passenger numbers’, Environmental Science and Pollution Research, 29(49), pp. 74715-74724.
- 17. Liu, X. et al. (2022) ‘A survey of COVID-19 in public transportation: Transmission risk, mitigation and prevention’, Multimodal transportation, 1(3), p. 100030.
- 18. Lu, J. et al. (no date) ‘Early Release-COVID-19 Outbreak Associated with Air Conditioning in Restaurant, Guangzhou, China, 2020-Volume 26, Number 7-July 2020-Emerging Infectious Diseases journal-CDC’.
- 19. Martin, T. et al. (2020) ‘Demystifying COVID-19 digital contact tracing: A survey on frameworks and mobile apps’, Wireless Communications and Mobile Computing, 2020, pp. 1-29.
- 20. Nisar, S. et al. (2020) ‘A privacy-preserved and cost-efficient control scheme for coronavirus outbreak using call data record and contact tracing’, IEEE Consumer Electronics Magazine, 10(2), pp. 104-110.
- 21. Nisar, S. et al. (2023) ‘A robust tracking system for COVID-19 like pandemic using advanced hybrid technologies’, Computing, 105(4), pp. 871-885.
- 22. Ong, E. et al. (2020) ‘COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning’, Frontiers in immunology, 11, p. 1581.
- 23. Park, J. and Kim, G. (2021) ‘Risk of COVID-19 infection in public transportation: The development of a model’, International journal of environmental research and public health, 18(23), p. 12790.
- 24. Rezaei, M. and Azarmi, M. (2020) ‘Deepsocial: Social distancing monitoring and infection risk assessment in covid-19 pandemic’, Applied Sciences, 10(21), p. 7514.
- 25. Sevi, B. and Shook, N.J. (2022) ‘The behavioral immune system and use of transportation services during the COVID-19 pandemic’, Journal of Transport & Health, 26, p. 101406.
- 26. Shafaghi, A.H. et al. (2020) ‘On the effect of the respiratory droplet generation condition on COVID-19 transmission’, Fluids, 5(3), p. 113.
- 27. Shen, J. et al. (2020) ‘Prevention and control of COVID-19 in public transportation: Experience from China’, Environmental pollution, 266, p. 115291.
- 28. Shrivastava, P. and O’Mahony, M. (2005) ‘Modeling an integrated public transportation system-a case study in Dublin, Ireland’.
- 29. Slaughter, A.-M. (2017) ‘Three responsibilities every government has towards its citizens’, in. World Economic Forum. Last modified February.
- 30. Sun, C. and Zhai, Z. (2020) ‘The efficacy of social distance and ventilation effectiveness in preventing COVID-19 transmission’, Sustainable cities and society, 62, p. 102390.
- 31. Taylor, D.B. (2020) ‘A timeline of the coronavirus pandemic’, The New York Times, 6.
- 32. Thomas, N., Jana, A. and Bandyopadhyay, S. (2022) ‘Physical distancing on public transport in Mumbai, India: Policy and planning implications for unlock and post-pandemic period’, Transport Policy, 116, pp. 217-236.
- 33. Walensky, R.P. (2021) ‘CDC updates and shortens recommended isolation and quarantine period for general population: media statement for immediate release: Monday, December 27, 2021’.
- 34. Xie, X. et al. (2007) ‘How far droplets can move in indoor environments-revisiting the Wells evaporation-falling curve’, Indoor air, 17(3), pp. 211-225.
- 35. Zhang, J. et al. (2017) ‘A real-time passenger flow estimation and prediction method for urban bus transit systems’, IEEE Transactions on Intelligent Transportation Systems, 18(11), pp. 3168-3178.
- 36. Zhang, J. (2020) ‘How did people respond to the COVID-19 pandemic during its early stage? A case study in Japan’, A Case Study in Japan (May 7, 2020) [Preprint].
- 37. Zhou, H. et al. (2021) ‘Impacts of COVID-19 and anti-pandemic policies on urban transport - an empirical study in China’, Transport policy, 110, pp. 135-149.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60c9ab49-33f6-443c-be8e-ea61ab444171