PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydro-geochemical analysis of meltwater draining from Bilare Banga glacier, Western Himalaya

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The changing climate is affecting the melting process of glacier ice and snow in Himalaya and may influence the hydrogeochemistry of the glacial meltwater. This paper represents the ionic composition of discharge from Bilare Banga glacier by carrying out hydro-geochemical analysis of water samples of melting season of 2017. The pH and EC were measured on-site in field, and others parameters were examined in the laboratory. The abundance of the ions observed in meltwater has been arranged in decreasing order for cations as Ca2+> Mg2+ > Na+ > K+ and for anions as HCO3 > SO42− > Cl> > NO3, respectively. Analysis suggests that the meltwater is mostly dominated by Ca2+ and 3. It has been observed that the ionic concentration HCO3 is dominant and Cl> is the least in the catchment. Piper plot analysis suggests that the chemical composition of the glacier discharge not only has natural origin but also has some anthropogenic input. Hydro-geochemical heterogeneity reflected the carbonate-dominated features (Ca2+–HCO3) in the catchment. The carbonate weathering was found as the regulatory factor to control the chemistry of the glacial meltwater due to the high enrichment ratio of (Ca2+ + Mg2+) against TZ+ and (Na+ + K+). In statistical approach, PCA analysis suggests that geogenic weathering dynamics in the catchment is associated with carbonate-dominant lithology.
Czasopismo
Rocznik
Strony
651--660
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
autor
  • Department of Environmental Science, SBSR, Sharda University, Greater Noida, India
autor
  • Department of Environmental Science, SBSR, Sharda University, Greater Noida, India
autor
  • Department of Environmental Science, SBSR, Sharda University, Greater Noida, India
  • Department of Environmental Science, SBSR, Sharda University, Greater Noida, India
  • Department of Computer Science, Electrical and Space Engineering, Lulea University of Technology, Luleĺ, Sweden
  • Department of Computer Science, Electrical and Space Engineering, Lulea University of Technology, Luleĺ, Sweden
  • Department of Zoology, Patna University, Patna, India
  • Department of Zoology, Patna University, Patna, India
  • Nalanda Open University, Biscoman Bhawan, Gandhi Maidan, Patna, India
  • DST, Technology Bhavan, New Mehrauli Road, New Delhi, India
Bibliografia
  • 1. American Public Health Association (APHA) (1998) Standard methods for the examination of water and waste water, 20th edn. APHA, AWWA, WPCF, Washington
  • 2. Blum JD, Gazis CA, Jacobson AD, Chamberlain CP (1998) Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline series. Geology 26(5):411–414
  • 3. Chauhan DS, Hasnain SI (1993) Chemical characteristics, solute and suspended sediments load in meltwater draining Satopanth and Bhagirathi Kharak glaciers, Ganga basin, India. In: Young GJ (ed) Snow and glacier hydrology, vol 218. IAHS Press, Wallingford, pp 2–10
  • 4. Dutta S, Mujtaba SAI, Saini HS, Chunchekar R, Kumar P (2017) Geomorphic evolution of glacier-fed Baspa Valley, NW Himalaya: record of Late Quaternary climate change, monsoon dynamics and glacial fluctuations. In: Pant NC, Ravindra R, Srivastava D, Thompson LG (eds) The Himalayan Cryosphere: past and present, vol 462. Geological Society, London. https://doi.org/10.1144/SP462.5
  • 5. Haritashya UK, Kumar A, Singh P (2010) Particle size characteristics of suspended sediment transported in meltwater from the Gangotri Glacier, central Himalaya—an indicator of subglacial sediment evacuation. Geomorphology 122(1–2):140–152. https://doi.org/10.1016/j.geomorph.2010.06.006
  • 6. Huang X, Sillanpää M, Duo B, Gjessing ET (2008) Water quality in the Tibetan Plateau: metal contents of four selected rivers. Environ Pollut 156(2):270–277
  • 7. Iscen CF, Emiroglu O, Ilhan S, Arslan N, Yilmaz V, Ahiska S (2008) Application of multivariate statistical techniques in the assessment of surface water quality in Uluabat Lake, Turkey. Environ Monit Assess 144(1–3):269–276
  • 8. Kanakiya RS, Singh SK, Sharma JN (2014) Determining the water quality index of an urban water body Dal Lake, Kashmir, India. IOSR J Environ Sci Toxicol Food Technol 08(12):64–71. https://doi.org/10.9790/2402-081236471
  • 9. Karim A, Veizer J (2000) Weathering processes in the Indus River basin: implications from riverine carbon, sulfur, oxygen, and strontium isotopes. Chem Geol 170:153–177
  • 10. Kotadiya NG, Acharya CA (2014) An assessment of lake water quality index of Manipu Lake of district Ahmedabad, Gujarat. Int J Sci Res 03(4):448–450
  • 11. Kumar K, Miral MS, Joshi S, Pant N, Joshi V, Joshi LM (2009) Solute dynamics of melt water of Gangotri glacier, Garhwal Himalaya, India. Environ Geol 58:1151–1159. https://doi.org/10.1007/s00254-008-1592-6
  • 12. Kumar A, Verma A, Dobhal DP, Mehta M, Kesarwani K (2014) Climatic control on extreme sediment transfer from Dokriani Glacier during monsoon, Garhwal Himalaya (India). J Earth Syst Sci 123:109–120
  • 13. Kumar R, Singh S, Kumar R, Singh A, Bhardwaj A, Sam L, Randhawa SS, Gupta A (2016) Development of a glaciohydrological model for discharge and mass balance reconstruction. J Water Resour Manag. https://doi.org/10.1007/s11269-016-1364-0
  • 14. Kumar R, Kumar R, Singh A, Sinha RK, Kumari A (2018a) Nanoparticles in glacial melt water. Mater Today Proc 5(3P1):9161–9166. https://doi.org/10.1016/j.matpr.2017.10.037
  • 15. Kumar R, Kumar R, Singh S, Singh A, Bhardwaj A, Kumari A, Randhawa SS, Saha A (2018b) Dynamics of suspended sediment load with respect to summer discharge and temperatures in Shaune Garang glacierized catchment. Acta Geophys, Western Himalaya. https://doi.org/10.1007/s11600-018-0184-4
  • 16. Lutz AF, Immerzeel WW, Shrestha AB, Bierkens MFP (2014) Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat Clim Change 4:587–592. https://doi.org/10.1038/nclimate2237
  • 17. Maurer JM, Rupper SB, Schaefer JM (2016) Quantifying ice loss in the eastern Himalayas since 1974 using declassified spy satellite imagery. Cryosphere 10:2203–2215. https://doi.org/10.5194/tc-10-2203-2016
  • 18. Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428
  • 19. Mortatti J, Probst JL (2003) Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations. Chem Geol 197:177–196
  • 20. Pant RR, Zhang F, Rehman FU, Wang G, Ming Y, Zeng C, Tang H (2018) Spatiotemporal variations of hydro-geochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal. Sci Total Environ 622–623(2018):770–782. https://doi.org/10.1016/j.scitotenv.2017.12.063
  • 21. Philip G, Sah MP (2004) Mapping repeated surges and retread of glaciers using IRS-1C/1D data: a case study of Shaune Garang glacier, northwestern Himalaya. Int J Appl Earth Obs Geoinf 6(2):127–141. https://doi.org/10.1016/j.jag.2004.09.002
  • 22. Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. Trans Am Geophy Union 25:914–928. https://doi.org/10.1029/TR025i006p00914
  • 23. Piper AM (1953) A graphic procedure in the geochemical interpretation of water analysis. Ground water note 12. U.S. Dept. of the Interior, Geological Survey, Water Resources Division, Ground Water Branch, Washington, p 63
  • 24. Ramanathan AL (2007) Seasonal variation in the major ion chemistry of Pandoh Lake, Mandi district, Himachal Pradesh, India. Appl Geochem 22:1736–1747
  • 25. Ravikumar P, Somashekar RK, Mehmood MA (2013) Water quality index to determine the surface water quality of Sankey tank and Mallathahalli Lake, Bangalore urban district, Karnataka, India. Appl Water Sci 3:247–261
  • 26. Raymahasay BC (1986) Geochemistry of bicarbonate in the river water. J Geol Soc India 27:114–118
  • 27. Saleem M, Jeelani G, Shah RF (2015) Hydro geochemistry of Dal Lake and the potential for present, future management by using facies, ionic ratios, and statistical analysis. Environ Earth Sci 74(4):3301–3313. https://doi.org/10.1007/s12665-015-4361-3
  • 28. Sam L, Bhardwaj A, Singh S, Kumar R (2015) Remote sensing in glacier velocity estimation and a novel approach for debris covered glaciers. Prog Phys Geogr. https://doi.org/10.1177/0309133315593894
  • 29. Schild A (2008) The case of the Hindu Kush–Himalayas: ICIMOD’s position on climate change and mountain systems. Mt Res Dev. https://doi.org/10.1659/mrd.mp009
  • 30. Sharma P, Ramanathan AL, Pottakkal JG (2013) Study of solute sources and evolution of hydro-geochemical processes of the Chhota Shigri Glacier meltwaters, Himachal Himalaya, India. Hydrol Sci J 58(5):1128–1143. https://doi.org/10.1080/02626667.2013.802092
  • 31. Shekhar M, Bhardwaj A, Singh S, Ranhotra PS, Bhattacharyya A, Pal AK, Roy I, Torres JM, Zorzano MP (2017) Himalayan glaciers experienced significant mass loss during later phases of little ice age. Sci Rep 7:10305. https://doi.org/10.1038/s41598-017-09212-2
  • 32. Shichang K, Dahe Q, Tandong Y (2000) A study on precipitation chemistry in the late summer in the northern slope of Mt. Xiaxabangma. Acta Sci Circumst 20(5):574–578
  • 33. Singh AK, Hasnain SI (1998a) Major ion chemistry and weathering control in a high altitude basin: Alaknanda River, Garhwal Himalaya, India. Hydrol Sci 43(6):825–843
  • 34. Singh AK, Hasnain SI (1998b) Major ion chemistry and weathering control in a high altitude basin: Alaknanda River, Garhwal Himalaya, India. Hydrol Sci J 43(6):825–843. https://doi.org/10.1080/02626669809492181
  • 35. Singh VB, Ramanathan AL (2015) Assessment of solute and suspended sediment acquisition processes in the Bara Shigri glacier meltwater (Western Himalaya, India). Environ Earth Sci 74:2009–2018
  • 36. Singh AK, Mondal GC, Kumar S, Singh TB, Tewari BK, Sinha A (2008) Major ion chemistry, weathering processes and water quality assessment in upper catchment of Damodar River basin, India. Environ Geol 54(4):745–758. https://doi.org/10.1007/s00254-007-0860-1
  • 37. Singh CK, Shashtri S, Mukherjee S (2011) Integrating multivariate statistical analysis with GIS for geochemical assessment of groundwater quality in Shiwaliks of Punjab, India. Environ Earth Sci 62:1387–1405
  • 38. Singh VB, Ramanathan AL, Jose PG, Sharma P, Linda A, Azam MF, Chatterjee C (2012) Chemical characterisation of meltwater draining from Gangotri Glacier, Garhwal Himalaya, India. J Earth Syst Sci 121(3):625–636
  • 39. Singh VB, Ramanathan AL, Jose PG, Kumar M (2014) Seasonal variation of the solute and suspended sediment load in Gangotri glacier meltwater, central Himalaya, India. J Asian Earth Sci 79:224–234
  • 40. Singh VB, Ramanathan AL, Sharma P, Pottakkal JG (2015) Dissolved ion chemistry and suspended sediment characteristics of melt water draining from Chhota Shigri glacier, Western Himalaya, India. Arab J Geosci 8:281–293
  • 41. Singh S, Kumar R, Bhardwaj A, Sam L, Shekhar M, Singh A, Kumar R, Gupta A (2016a) Changing climate and glacio-hydrology in Indian Himalayan Region: a review. Wiley Interdiscip Rev Clim Change 7(3):393–410. https://doi.org/10.1002/wcc.39
  • 42. Singh VB, Ramanathan AL, Mandal A (2016b) Hydrogeochemistry of high-altitude lake: a case study of the Chandra Tal, Western Himalaya, India. Arab J Geosci 9(4):308. https://doi.org/10.1007/s12517-016-2358-1
  • 43. Singh VB, Ramanathan AL (2017) Hydrogeochemistry of the Chhota Shigri glacier meltwater, Chandra basin, Himachal Pradesh, India: solute acquisition processes, dissolved load and chemical weathering rates. Environ Earth Sci 76(5):223
  • 44. Singh S, Kumar R, Bhardwaj A, Kumar R, Singh A (2018) Changing climate and glacio-hydrology: a case study of Shaune Garang basin, Himachal Pradesh. Int J Hydrol Sci Technol. https://doi.org/10.1504/IJHST.2018.10010353
  • 45. Szopińska M, Szumińska D, Bialik RJ, Chmiel S, Plenzler J, Polkowska Z (2018) Impact of a newly-formed periglacial environment and other factors on fresh water chemistry at the western shore of Admiralty Bay in the summer of 2016 (King George Island, Maritime Antarctica). Sci Total Environ 613–614(2018):619–634. https://doi.org/10.1016/j.scitotenv.2017.09.060
  • 46. Thomas J, Joseph S, Thrivikramji KP (2015) Hydro-chemical variations of a tropical mountain river system in a rain shadow region of the southern Western Ghats, Kerala, India. Appl Geochem 63:456–471
  • 47. Tranter M, Brown GH, Raiswell R, Sharp MJ, Gurnell AM (1993) A conceptual model of solute acquisition by Alpine glacier meltwaters. J Glaciol 39(133):573–581
  • 48. Vasanthavigar M, Srinivasamoorthy K, Prasanna MV (2013) Identification of groundwater contamination zones and its sources by using multivariate statistical approach in Thirumanimuthar sub basin, Tamil Nadu, India. Environ Earth Sci 68:1783–1795
  • 49. Vetrimurugan E, Elango L, Rajmohan N (2013) Sources of contaminants and groundwater quality in the coastal part of a river delta. Int J Environ Sci Technol 10(3):473–486. https://doi.org/10.1007/s13762-012-0138-3
  • 50. Wulf H, Bookhagen B, Scherler D (2010) Seasonal precipitation gradients and their impact on fluvial sediment flux in the Northwest Himalaya. Geomorphology 118:13–21
  • 51. Xiao J, Jin ZD, Zhang F, Wang J (2012) Solute geochemistry and its sources of the ground waters in the Qinghai Lake catchment, NW China. J Asian Earth Sci 52:21–30. https://doi.org/10.1016/j.jseaes.2012.02.006
  • 52. Zhu B, Yu J, Qin X, Rioual P, Jiang F, Liu Z, MuY LH, Ren X, Xiong H (2013) Identification of rock weathering and environmental control in arid catchments (northern Xinjiang) of Central Asia. J Asian Earth Sci 66:277–294. https://doi.org/10.1016/j.jseaes.2013.02.005
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60c752ab-2f6e-4f09-bf8d-23f678f5fdd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.