Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is shown that the lower and upper critical values of the Durbin-Watson (D-W) statistic are asymptotically the same for the analysis based on M-estimators as for the classical least squares analysis. Moreover, the paper offers a possibility to make an idea when the asymptotics may start to work. Considering the B-robust optimal ψ-function, we demonstrate that the differences between the precise critical values of Durbin-Watson statistics evaluated for residuals corresponding to the M-estimate and critical values which were found by Durbin and Watson for the least squares analysis are rather small even for moderate sample size.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
435--483
Opis fizyczny
Bibliogr. 92 poz., tab.
Twórcy
autor
- Department of Macroeconomics and Econometrics, Institute of Economic Studies, Faculty of Social Sciences, Charles University
- Department of Stochastic Informatics, Institute of Information Theory and Automation, Academy of Sciences of Czech Republic, Opletalova ulice 26, CZ - 11000 Prague 1, Czech Republic
Bibliografia
- [1] T. W. Anderson, On the theory of testing serial correlation, Skandinavisk Aktuarietidskrift 31 (1948), pp. 88-116.
- [2] I. Antoch and J. Á. Víšek, Robust estimation in linear models and its computational aspects, in: Contributions to Statistics: Computational Aspects of Model Choice, J. Antoch (Ed.), Springer, 1991, pp. 39-104.
- [3] J. Antoch and D. Vorlíčková, Vyrané metody statistické analýzy dat (Selected Methods of Statistical Analysis - in Czech) Academia, Praha 1992.
- [4] O. Arslan, A simple test to identify good solution of redescending M-estimating equations for regression, in: Developments in Robust Statistics, R. Dutter, P. Filzmoser, U. Gather and P. J. Rousseeuw (Eds.), Physica-Verlag, Springer-Verlag Company 2003, pp. 50-61.
- [5] A. C. Atkinson, Plots, Transformations and Regression: An introduction to Graphical Methods of Diagnostic Regression Analysis, Claredon Press, Oxford -1985.
- [6] D. A. Belsley, E. Kuh and R. E. Welsch, Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, Wiley, New York 1980.
- [7] R. Beran, An efficient and robust adaptive estimator of location, Ann. Statist. 6 (1978), pp. 292-313.
- [8] P. J. Bickel, One-step Huber estimates in the linear model, J. Amer. Statist. Assoc. 70 (1975), pp. 428-433.
- [9] G. Boente and R. Fraiman, A functional approach to robust nonparametric regression, in: Directions in Robust Statistics and Diagnostics, Part I, W. Stahel and S. Weisberg (Eds.), Springer, New York 1991, pp. 35-46.
- [10] L. Breiman, Probability, Addison-Wesley Publishing Company, London 1968.
- [11] S. Chatterjee and A. S. Hadi, Sensitivity Analysis in Linear Regression, Wiley, New York 1988.
- [12] R. D. Cook and S. Weisberg, Diagnostics of heteroscedasticity in regression, Biometrika 70 (1983), pp. 1-10.
- [13] C. Croux and G. Haesbroeck, Influence function and effciency of the minimum covariance determinant scatter matrix estimation, J. Multivariate Anal. 71 (1999), pp. 161-190.
- [14] M. Csörgő and P. Révész, Strong Approximation in Probability and Statistics, Akadémiai Kiadó, Budapest 1981.
- [15] M. B. Dollinger and R. G. Staudte, Efficiency of reweighted least squares iterates, in: Directions in Robust Statistics and Diagnostics, Part I, W. Stahel and S. Weisberg (Eds.), Springer, New York 1991, pp. 61-66.
- [16] N. R. Draper and H. Smith, Applied Regression Analysis, 3rd edition, Wiley, New York 1998.
- [17] J. Durbin and G. S. Watson, Testing for serial correlation in least squares regression. I, Biometrika 37 (1952), pp. 409-428.
- [18] S. Geisser, Diagnostics, divergence and perturbation analysis, in: Directions in Robust Statistics and Diagnostics, Part I, W. Stahel and S. Weisberg (Eds.), Springer, New York 1991, pp. 89-100.
- [19] W. H. Greene, Econometric Analysis, Macmillan Press, New York 1993.
- [20] A. S. Hadi, Identifying multiple outliers in multivariate data, J. Roy. Statist. Soc., Ser. B, 54 (1992), pp. 761-777.
- [21] A. S. Hadi, A modification of a method for the detection of outliers in multivariate samples, J. Roy. Statist. Soc., Ser. B, 56 (1994), pp. 393-396.
- [22] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw and W. A. Stahel, Robust Statistics - The Approach Based on Influence Functions, Wiley, New York 1986.
- [23] M. A. Hauser, Semiparametric and nonparametric testing for long memory: A Monte Carlo study, Empirical Economics 22 (1997), pp. 247-271.
- [24] T. P. Hettmansperger and J. D. Naranjo, Some research directions in rank-based inference, in: Directions in Robust Statistics and Diagnostics, Part I , W. Stahel and S. Weisberg (Eds.), Springer, New York 1991, pp. 113-120.
- [25] T. P. Hettmansperger and S. J. Sheather, A cautionary note on the method of least median squares, Amer. Statist. 46 (1992), pp. 79-83.
- [26] P. J. Huber, Robust estimation of a location parameter, Ann. Math. Statist. 35 (1964), pp. 73-101.
- [27] P. J. Huber, Robust Statistics, Wiley, New York 1981.
- [28] P. J. Huber, Between robustness and diagnostics, in: Directions in Robust Statistics ad Diagnostics, Part I, W. Stahel and S. Weisberg (Eds.), Springer, New York 1991, pp. 121-131.
- [29] G. G. Judge, W. E. Griffiths, R. C. Hill, H. Lütkepohl and T. Ch. Lee, The Theory and Practice of Econometrics, Wiley, New York 1985.
- [30] J. Jurečková, Consistency of M-estimators in linear model generated by non-monotone and discontinuous ψ-functions, Probab. Math. Statist. 10 (1988), pp. 1-10.
- [31] J. Jurečková and M. Malý, The asymptotics for studentized k-step M-estimators of location, Sequential Anal. 14 (1995), pp. 229-245.
- [32] J. Jurečková and S. Portnoy, Asymptotics for one-step M-estimators in regression with application to combining efficiency and high breakdown point, Commun. Statist. A 16 (1988), pp. 2187-2199.
- [33] I. Jurečková and P. K Sen, Uniform second order asymptotic linearity of M-statistics in linear models, Statist. Decisions 7 (1989), pp. 263-276.
- [34] J. Jurečková and P. K. Sen, Regression rank scores scale statistics and studentization in linear models, in: Proceedings of the Fifth Prague Symposium on Asymptotic Statistics, Physica-Verlag, 1993, pp. 111-121.
- [35] J. Jurečková and A. H. Welsh, Asymptotic relations between L- and M-estimators in the linear model, Ann. Inst. Statist. Math. 42 (1990), pp. 671-698.
- [36] J. Kmenta, Elements of Econometrics, Macmillan Publishing Company, New York 1986.
- [37] R. Koenker and G. Bassett, Regression quantiles, Econometrica 46 (1978), pp. 33-50.
- [38] T. S. Kuhn, Structure of Scientific Revolution, University of Chicago Press, Chicago, Phoenix Broks 159 (1965).
- [39] A. J. Lawrence, Local and deletion influence, in: Directions in Robust Statistics and Diagnostics, Part I , W. Stahel and S. Weisberg (Eds.), Springer, New York 1991, pp. 141-158.
- [40] C. C. Macduffee, The Theory of Matrices, Chelsea Publishing Company, 1946.
- [41] G. S. Maddala, Introduction to Econometrics, Macmillan Press, New York 1988.
- [42] M. Markatou and X. He, Bounded influence and high breakdown point testing procedures in linear models, J. Amer. Statist. Assoc. 89 (1994), pp. 543-549.
- [43] M. Markatou, W. A. Stahel and E. M. Ronchetti, Robust M-type testing procedures for linear models, in: Directions in Robust Statistics and Diagnostics, Part I, W. Stahel and S. Weisberg (Eds.), Springer, New York 1991, pp. 201-220.
- [44] R. A. Maronna and V. J. Yohai, The breakdown point of simultaneous general M-estimates of regression and scale, J. Amer. Statist. Assoc. 86 (1981), pp. 699-704.
- [45] R. D. Martin, V. J. Yohai and R. H. Zamar, Min-max bias robust regression, Ann. Statist. 17 (1989), pp. 1608-1630.
- [46] J. W. McKean, S. J. Sheather and T. P. Hettmansperger, Regression diagnostics for rank-based method. II, in: Directions in Robust Statistics and Diagnostics, Part II, W. Stahel and S. Weisberg (Eds.), Springer, New York 1991, pp. 21-32.
- [47] G. E. Mizon, A simple message for autocorrelation correctors: Don't, J. Econometrics 69 (1995), pp. 267-288.
- [48] J. von Neumann, Distribution of the ratio of the mean-square successive difference to the variance, Ann. Math. Statist. 12 (1941), pp. 367-395.
- [49] A. Ö. Önder and A. Zaman, A test of normality based on robust regression residuals, in: Developments in Robust Statistics, R. Dutter, P. Filzmoser, U. Gather and P. J. Rousseeuw (Eds.), Physica-Verlag, Springer-Verlag Company, 2003, pp. 296-306.
- [50] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York-London 1970.
- [51] A. Peters and P. Sibbertsen, Tests on fractional cointegration, in: Developments in Robust Statistics, R. Dutter, P. Filzmoser, U. Gather and P. J. Rousseeuw (Eds.), Physica-Verlag, Springer-Verlag Company, 2003, pp. 307-316.
- [52] E. J. G. Pitman, The 'closest' estimates of statistical parameters, Proc. Cambridge Phil. Soc. 33 (1937), pp. 212-222.
- [53] D. Pollard, Asymptotics for least absolute deviation regression estimator, Econometric Theory 7 (1991), pp. 186-199.
- [54] K. R. Popper, Objective Knowledge, Oxford Clarendon Press, 1972.
- [55] S. Portnoy, Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles, in: Robust and Nonlinear Time-Series Analysis, J. Franke, W. Härdle and D. Martin (Eds.), Springer, New York 1983, pp. 231-246.
- [56] S. Portnoy, Regression quantile diagnostics for multiple outliers, in: Diections in Robust Statistics and Diagnostics, Part II, W. Stahel and S. Weisberg (Eds.), Springer, New York 1991, pp. 145-158.
- [57] I. Prigogine and I. Stengers, La Nouvelle Alliance, SCIENTIA, 1977, issues 5-12.
- [58] I. Prigogine and I. Stengers, Order out of Chaos. Man's New Dialog with Nature, Bantam Books, New York 1984.
- [59] R. C. Rao and L. C. Zhao, On the consistency of M-estimate in linear model obtained through an estimating equation, Statist. Probab. Lett. 14 (1992), pp. 79-84.
- [60] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection, Wiley, New York 1987.
- [61] A. M. Rubio and J. Á. Višek, Asymptotic representation of constrained M-estimators, in: Transactions of the Twelfth Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, Prague, 1994 (1993), pp. 207-210.
- [62] A. M. Rubio and J. Á. Višek, A note on asymptotic linearity of M-statistics in nonlinear models, Kybernetika 32 (1996), pp. 353-374.
- [63] R. Schall and T. T. Dunne, Diagnostics for regression - ARMA time series, in: Directions in Robust Statistics and Diagnostics, Part II, W. Stahel and S. Weisberg (Eds.), Springer, New York 1991, pp. 223-242.
- [64] W. Stahel and S. Weisberg (Eds.), Directions in Robust Statistics and Diagnostics, Parts I and II, Springer, New York 1991.
- [65] J. Štĕpán, Teorie Pravdĕpodobnosti (Theory Probability - in Czech), Academia, Praha 1987.
- [66] C. Stone, Adaptive maximum likelihood estimators of a location parameter, Ann. Statist. 3 (1975), pp. 267-284.
- [67] J. W. Tukey, Graphical displays for alternate regression fits, in: Directions in Robust Statistics and Diagnostics, Part II, W. Stahel and S. Weisberg (Eds.), Springer, New York 1991, pp. 145-158.
- [68] C. M. Urzua, On the correct use of omnibus tests for normality, Econom. Lett. 53 (1996), pp. 247-251.
- [69] J. Á. Višek, Adaptive estimation in linear regression model, Kybernetika 28 (1991), Part I., Consistency, pp. 26-36, Part II. Asymptotic normality, pp. 100-119.
- [70] J. Á. Višek, Stability of regression model estimates with respect to subsamples, Computat. Statist. 7 (1992), pp. 183-203.
- [71] J. Á. Višek, A cautionary note on the method of Least Median of Squares reconsidered, in: Transactions of the Twelfth Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, Academia Prague-Kluwer Academic Press, Dordrecht 1994, pp. 254-259.
- [72] J. Á. Višek, On high breakdown point estimation, Computat. Statist 11 (1996a), pp. 137-146.
- [73] J. Á. Višek, On the heuristics of statistical results, in: Proceedings of 'PROBASTAT'’94, Tatra Mountains Publ. 7, Bratislava 1996b, pp. 349-357.
- [74] J. Á. Višek, Sensitivity analysis on M-estimates, Ann. Inst. Statist. Math. 48 (1996c) pp. 469-495.
- [75] J. Á. Višek, Contamination level and sensitivity of robust tests, in: Handbook of Statistics, Vol. 15, G. S. Maddala and C. R. Rao (Eds.), Elsevier Science B.V., Amsterdam 1997, pp. 633-642.
- [76] J. Á. Višek, Robust instruments, in: Robust '98, J. Antoch and G. Dohnal (Eds.), published by the Union of Czechoslovak Mathematicians and Physicists, 1998a, pp. 195-224.
- [77] J. Á. Višek, Robust specification test, in: Proceedings of Prague Stochastics '98, M. Hušková, P. Lachout and J. Á. Višek (Eds.), published by the Union of Czechoslovak Mathematicians and Physicists 1998b, pp. 581-586.
- [78] J. Á. Višek, The least trimmed squares - random carriers, Bull. Czech Econometric Soc. 10 (1999a), pp. 1-30.
- [79] J. Á. Višek, Robust estimation of regression model, Bull. Czech Econometric Soc. 9 (1999b), pp. 57-79.
- [80] J. Á. Višek, The robust regression and the experiences from its application on estimation of parameters in a dual economy, in: Proceedings of the Conference "Macromodels '99" organized by Wrocław University, 4-6 December, 1999, in Rydzyna, Poland, 1999c, pp. 424-445.
- [81] J. Á. Višek, On the diversity of estimates, Computat. Statist. Data Anal. 34 (2000a), pp. 67-89.
- [82] J. Á. Višek, Robust instrumental variables and specification test, in: PRASTAN 2000, Proceedings of conference "Mathematical Statistics and Numerical Mathematics and Their Applications, 2000b, pp. 133-164.
- [83] J. Á. Višek, Over- and underfitting the M-estimates, Bull. Czech Econometric Soc. 7 (2000c), pp. 53-83.
- [84] J. Á. Višek, Overfitting the least trimmed squares, in: PRASTAN 2001, Proceedings of conference "Mathematical Statistics and Numerical Mathematics and Their Applications", 2001a, pp. 160-166.
- [85] J. Á. Višek, Regression with high breakdown point, in: ROBUST2000, organized by the Union of the Czech Mathematicians and Physicists and the Czech Statistical Society, 2001b, pp. 324-356.
- [86] J. Á. Višek, Sensitivity analysis of M-estimates of nonlinear regression model: Influence of datu subsets, Ann. Inst. Statist. Math. 54 (2) (2002a), pp. 261-290.
- [87] J. Á. Višek, White test for the least weighted squares, in: COMPSTAT 2002, Berlin, Proceedings of the Conference CompStat 2002 - Short Communications and Poster (CD), S. Klinke, P. Ahrend and L. Richter (Eds.), 2002b.
- [88] J. Á. Višek, Development of the Czech export in nineties, in: Consolidation of Governing and Business in the Czech Republic and in EU, 2003, MatFyz Press, 2003, pp. 193-220.
- [89] R. E. Welsh, Influence function and regression diagnostic, in: Modern Data Analysis, R. L. Launer and A. F. Sigel (Eds.), Academic Press, New York 1982.
- [90] G. Willem, G. Pison, P. J. Rousseeuw and S. van Aelst, A robust Hotelling test, in: Developments in Robust Statistics, R. Dutter, P. Filzmoser, U. Gather and P. J. Rousseeuw (Eds.), Physica-Verlag, Springer-Verlag Company, 2003, pp. 417-431.
- [91] V. J. Yohai and R. A. Maronna, Asymptotic behaviour of M-estimators for the linear model, Ann. Statist. 7 (1979), pp. 248-268.
- [92] K. Zvára, Regresní analýza (Regression Analysis - in Czech), Academia, Praha 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60c6cda9-bddf-48e4-801e-ff9ad3b85ac0