PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical Modelling of the Trailer Brake Control Valve for Simulation of the Air Brake System of Farm Tractors Equipped with Hydraulically Actuated Brakes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie matematyczne zaworu sterującego hamulcami przyczepy do symulacji powietrznej instalacji hamulcowej ciągników rolniczych z hamulcami uruchamianymi hydraulicznie
Języki publikacji
EN PL
Abstrakty
EN
Agricultural tractors are equipped with air braking systems to control and operate the braking systems of towed agricultural vehicles. This paper presents a mathematical model of a hydraulically actuated trailer brake control valve. The results of the statistical Kolmogorov-Smirnov test confirmed the consistence between the experimental and simulated pressure transients during testing the response time of a farm tractor's control circuit. The computer model developed in Matlab-Simulink can be used as a tool to analyze transient processes by using simulation methods in the process of designing the air braking systems of farm tractors.
PL
Ciągniki rolnicze są wyposażone w powietrzne instalacje hamulcowe do sterowania i napędu układów hamulcowych pojazdów ciągnionych. W niniejszej pracy przedstawiono model matematyczny uruchamianego hydraulicznie zaworu sterującego hamulcami przyczepy. Wyniki testu statystycznego Kołmogorowa-Smirnowa oceny zgodności doświadczalnych i symulowanych przebiegów czasowych ciśnienia podczas badania czasu reakcji obwodu sterującego ciągnika Pronar 1531A potwierdziły adekwatność opracowanego w Matlabie-Simulinku modelu komputerowego. Model komputerowy może być wykorzystany jako podsystem do analizy metodami symulacyjnymi procesów przejściowych w procesie projektowania powietrznych układów hamulcowych ciągników rolniczych.
Rocznik
Strony
637--643
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
  • Bialystok University of Technology Faculty of Mechanical Engineering ul. Wiejska 45C, 15-351 Bialystok, Poland
Bibliografia
  • 1. Armstrong-Helouvry B, Dupont P, Canudas de Wit C. A survey of models analysis tools and compensation methods for the control of machines with friction. Automatica 1994; 30, (7): 1083–1138.
  • 2. Beater P. Pneumatic drives. System design, modeling and control. Berlin, Heidelberg: Springer-Verlag, 2007.
  • 3. Draft Regulation of the European arliament and the Council on the braking systems of agricultural or forestry tractors, their trailers and interchangeable towed machinery, amending Directive 2003/37/EC, Council Directive 89/173/EEC and repealing Council Directive 76/432/ EEC. (17.11.2008) https://circabc.europa.eu/sd/d/da0dfc11-858f-4ccb-bd65865a3e46b050/5030_99rev16_v171108.pdf (accessed 2 May 2014)
  • 4. ECE Regulation No. 13. Uniform provisions concerning the approval of vehicles of categories M, N and O with regard to braking. UN Economic Commission for Europe, Geneva, Switzerland, 2001.
  • 5. Haldex European Aftermarket Catalogue 2007/2008. http://www.mirbm.ru/files/catalogs/283.pdf (accessed 2 May 2014).
  • 6. He L, Wang X, Zhang Y, Wu J, Chen L. (2011) Modeling and simulation vehicle air brake system. Proceedings 8th Modelica Conference. Dresden, Germany, March 20-22, 2011: 430-435. https://modelica.org/events/modelica2011/Proceedings/pages/papers/17_3_ID_144_a_ fv.pdf (accessed 2 May 2014)
  • 7. Jelali M, Kroll A. Hydraulic Servo-systems: modelling, identification and control, London: Springer, 2003.
  • 8. Kamiński Z. Dynamic calculations of pneumatic relay valve. Acta Mechanica et Automatica 2009; 3(1): 62-64.
  • 9. Kamiński Z. Mathematical modeling of pneumatic pipes in a simulation of heterogeneous engineering systems. ASME Journal of Fluids Engineering 2011; 133(12): 1-8.
  • 10. Kamiński Z. Mathematical modeling of pneumatic relay valve. Hydraulika i Pneumatyka 2009; 5: 22-25.
  • 11. Kamiński Z. Mathematical modelling of the pneumatic relay emergency valve for dual-line agricultural trailer braking systems. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2012; 226(5): 603-612.
  • 12. Kamiński Z. Modelling of the energy supply equipment of the air braking system of a farm tractor. The Archives of Automotive Engineering 2011; 53(3): 33-39.
  • 13. Kamiński Z. Simulation and experimental testing of the pneumatic brake systems of agricultural vehicles. Białystok: Oficyna Wydawnicza Politechniki Białostockiej, 2012.
  • 14. Keyser DE. and Hogan K. Hydraulic brake systems and components for off-highway vehicles and equipment. National Fluid Power Association Technical Paper Series 1992; I 92-1.4: 1-9.
  • 15. Keyser DE. Full power hydraulic brake actuation, circuit design considerations for off-highway vehicles and equipment. 10th International Conference on Fluid Power – the Future for Hydraulics, Brugge, Belgium, 5-7 April 1993, edited by N. Way. Mechanical Engineering Publications, London.
  • 16. Krivts IL, Krejnin GV. Pneumatic actuating systems for automatic equipment. Structure and design. Boca Raton, London, New York: CRC Taylor & Francis, 2006.
  • 17. Krus P, Weddfeld K, Palmberg JO. (1994) Fast pipeline models for simulation of hydraulic systems. Transactions of the ASME, Journal of Dynamic Systems, Measurements and Control 1994; 116(1): 132-136.
  • 18. Lin M, Zhang W. (2007) Dynamic simulation and experiment of a full power hydraulic braking system. Journal of University of Science and Technology Beijing 2007; 29(10): 70-75.
  • 19. Metljuk NF, Avtushko VP. Dinamika pnevmaticheskikh privodov avtomobilej. Moskva: Mashinostroenie, 1980.
  • 20. Miatluk M, Kamiński Z, Czaban J. Characteristic features of the airflow of pneumatic elements of agricultural vehicles. Commission of Motorization and Power Industry in Agriculture 2003; 3: 174-181.
  • 21. Miatluk M, Czaban J. An analysis of transient processes in pneumatic brake system with automatic regulator of brake forces of automotive vehicles. Commission of Motorization and Power Industry in Agriculture 2006; 6: 85-93.
  • 22. Natarajan SV, Subramanian SC, Darbha S. Rajagopal, K.R. (2007) A model of the relay valve used in an air brake system. Nonlinear Analysis: Hybrid Systems 2007; (1)3: 430-442.
  • 23. Nėmeth H, Ailer P, Hangos KM. Unified model simplification procedure applied to a single protection valve. Control Engineering Practice 2005; 13(3): 315-326.
  • 24. Podrigalo M, Abramov D. Selection of tractor brake type in main phase of its design engineering. Brake Conference 2001. Brakes of road vehicles, Łódź, Poland, 19-21 April 2001, I: 69-78.
  • 25. Prabhu SM. Model-based design for off-highway machine systems development (2007-01-4248). SAE Commercial Vehicle Engineering Congress, 2007 October 31- November 1, Rosemont (Chicago), USA: 1-10.
  • 26. Pronar. Tractors. Tractor Pronar 1523A. http://www.pronar.pl/EN/ENciagniki/_pronar_1523a_.html (accessed 2 May 2014).
  • 27. Radlinski RW, Flick MA. Tractor and trailer brake system compatibility. SAE Transactions 1986, paper no. 861942.
  • 28. Subramanian SC, Darbha S, Rajagopal KR. Modelling the pneumatic subsystem of a S-cam air brake system. Trans. of the ASME, Journal of Dynamic Systems, Measurement and Control 2004; 126(1): 36-46.
  • 29. Wabco. Air-braking system. Agriculture and forestry vehicles. Edition 8 (Version 2/02.2010(en)). http://inform.wabco-auto.com/intl/pdf/815/00/82/8150100823.pdf (accessed 2 May 2014).
  • 30. Zhang H, Wu J, Zhang Y, Chen L. Objected oriented modelling and simulation of pneumatic brake system with ABS. IEEE Intelligent Vehicle Symposium, Xi’an, Shaanxi, China, June 3-5, 2009: 780-785.
  • 31. Zurada J, Levitan A, Guan JA Comparison of regression and artificial intelligence methods in a mass appraisal context. Journal of Real Estate Research 2011, 33(3): 349-387.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60c665f0-82dc-407a-ab36-fc961ee0bb7d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.