PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of a linear quadratic regulator based on genetic model reference adaptive control

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The conventional control system is a controller that controls or regulates the dynamics of any other process. From time to time, a conventional control system may not behave appropriately online; this is because of many factors like a variation in the dynamics of the process itself, unexpected changes in the environment, or even undefined parameters of the system model. To overcome this problem, we have designed and implemented an adaptive controller. This paper discusses the design of a controller for a ball and beam system with Genetic Model Reference Adaptive Control (GMRAC) for an adaptive mechanism with the MIT rule. Parameter adjustment (selection) should occur using optimization methods to obtain an optimal performance, so the genetic algorithm (GA) will be used as an optimization method to obtain the optimum values for these parameters. The Linear Quadratic Regulator (LQR) controller will be used as it is one of the most popular controllers. The performance of the proposed controller with the ball and beam system will be carried out with MATLAB Simulink in order to evaluate its effectiveness. The results show satisfactory performance where the position of the ball tracks the desired model reference.
Twórcy
  • Systems and Control Engineering Department, Ninevah University, Mosul, 40001, Iraq
autor
  • Systems and Control Engineering Department, Ninevah University, Mosul, 40001, Iraq
  • Systems and Control Engineering Department, Ninevah University, Mosul, 40001, Iraq
Bibliografia
  • [1] P. Jain and M. J. Nigam, “Design of a Model Reference Adaptive Controller Using Modified MIT Rule for a Second Order System,” vol. 3, no. 4,2013, pp. 477–484.
  • [2] M. Mohan and P. CP, “A model reference adaptive pi controller for the speed control of three phase induction motor” International Journal of Engineering Research and, vol. V5, no. 07, 2016.
  • [3] X.-J. Liu, F. Lara-Rosano, and C. W. Chan, “Model-reference adaptive control based on Neurofuzzy Networks,” IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), vol. 34, no. 3, 2004, pp. 302–309.
  • [4] S. Kersting and M. Buss, “Direct and indirect model reference adaptive control for multivariable piecewise affine systems,” IEEE Transactions on Automatic Control, vol. 62, no. 11, 2017, pp. 5634–5649.
  • [5] A, Abdulla, I. Mohammed, and A. Jasim. “Roll control system design using auto tuning LQR technique.” International Journal of Engineering and Innovative Technology, V7, no. 01, 2017.
  • [6] L. Lublin and M. Athans, “Linear quadratic regulator control,” in The Control Systems Handbook: Control System Advanced Methods, Second Edition, 2010.
  • [7] Y. S Dawood, A. K Mahmood, and M. A Ibrahim, “Comparison of PID, GA and Fuzzy Logic Controllers for Cruise Control System,” Int. J. Comput. Digit. Syst., vol. 7, no. 05, 2018, pp. 311–319.
  • [8] V. Dhiman, G. Singh, and M. Kumar, “Modeling and control of underactuated system using LQR controller based on GA,” in Lecture Notes in Mechanical Engineering, 2019.
  • [9] A. G. Pillai, E. R. Samuel, and A. Unnikrishnan, “Analysis of optimised LQR controller using genetic algorithm for isolated power system,” in Advances in Intelligent Systems and Computing, 2019, vol. 939.
  • [10] X.-S. Yang, “Genetic Algorithms,” Nature-Inspired Optim. Algorithms, pp. 91–100, Jan. 2021
  • [11] M. Rezaee and R. Fathi, “A new design for automatic ball balancer to improve its performance,” Mech. Mach. Theory, vol. 94, 2015, pp. 165–176.
  • [12] E. A.Rosales, “A Ball-on-Beam Project Kit,” Proc. 22nd..., 2004.
  • [13] M. Shah, R. Ali, and F. M. Malik, “Control of ball and beam with LQR control scheme using flatness based approach,” 2019
  • [14] X. Li and W. Yu, “Synchronization of ball and beam systems with neural compensation,” Int. J. Control. Autom. Syst., vol. 8, no. 3, 2010
  • [15] C. G. Bolívar-Vincenty and Beauchamp-Báez, “Modelling the Ball-and-Beam System From Newtonian Mechanics and from Lagrange Methods,” Twelfth LACCEI Lat. Am. Caribb. Conf. Eng. Technol., vol. 1, 2014.
  • [16] Mr. Hrishikesh R. Shirke and Dr. Prof. Mrs. N. R. Kulkarni, “Mathematical Modeling, Simulation and Control of Ball and Beam System,” Int. J. Eng. Res., vol. V4, no. 03, Mar. 2015.
  • [17] F. A. Salem “Mechatronics design of ball and beam system: education and research,” Mechatronics vol. 5, no. 4, 2015.
  • [18] M. Keshmiri, A. F. Jahromi, A. Mohebbi, M. H. Amoozgar, and W. F. Xie, “Modeling and control of ball and beam system using model based
  • [19] D. Colón, Y. Smiljanic Andrade, A. M. Bueno, I. Severino Diniz, and J. Manoel Balthazar. “Modeling, control and implementation of a Ball and Beam system.” In 22nd International Congress of Mechanical Engineering-COBEM. 2013.
  • [20] M. Nokhbeh and D. Khashabi, “Modelling and Control of Ball-Plate System,” Math. Model., 2011.
  • [21] K. B. Pathak Scholar, “MRAC BASED DC SERVO MOTOR MOTION CONTROL,” Int. J. Adv. Res. Eng. Technol., vol. 7, no. 2, 2016.
  • [22] S. A. Kochummen, N. E. Jaffar, and A. Nasar, “Model Reference Adaptive Controller designs of steam turbine speed based on MIT Rule,” 2016.
  • [23] M. Swathi and P. Ramesh, “Modeling and analysis of model reference adaptive control by using MIT and modified MIT rule for speed control of DC motor,” 2017.
  • [24] W. Alharbi and B. Gomm, “Genetic Algorithm Optimisation of PID Controllers for a Multivariable Process,” Int. J. Recent Contrib. from Eng. Sci. IT, vol. 5, no. 1, 2017.
  • [25] N. Razmjooy, M. Ramezani, and A. Namadchian, “A new LQR optimal control for a single-link flexible joint robot manipulator based on grey wolf optimizer,” Majlesi J. Electr. Eng., vol. 10, no. 3, 2016.
  • [26] A. Mahmood, M.Almaged, and A. Abdulla. “Antenna azimuth position control using fractional order PID controller based on genetic algorithm.” In IOP Conference Series: Materials Science and Engineering, vol. 1152, no. 1, p. 012016. IOP Publishing, 2021.
  • [27] A. Mahmood, A. Abdulla, and I. Mohammed, “Helicopter Stabilization Using Integer and Fractional Order PID Controller Based on Genetic Algorithm,” 2020.
  • [28] P. Shen, “LQR control of double invertedpendulum based on genetic algorithm.” In 2011 9th World Congress on Intelligent Control and Automation, pp. 386-389. IEEE, 2011.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60c18589-4939-425f-a03e-24b674533138
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.