PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Selection of truck mixer concrete pump using novel MEREC DNMARCOS model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Construction is one of the most developed industries of this century, especially thanks to the high rate of urbanization, mobility, and the tendency to fulfill global goals. A very important component of civil engineering is adequate and modern equipment which depends on the efficiency of execution of operations and processes in construction. A novel MCDM (multi-criteria decision-making) scheme was proposed in this paper, which means the development of the original and innovative DNMARCOS (Double normalized measurement alternatives and ranking according to the compromise Solution) for choosing a construction equipment among 16 variant solutions. For determination the criteria weights, an objective MEREC was applied, whose integration with the DNMARCOS method represents an additional contribution. The obtained results show that the first three alternatives Magnum MK 24.4Z-80/115 RH (A1); Magnum MK 28L-5-80/115 RH (A2); Magnum MK 25 H80 RH (A3) are the best solution for a construction company. To check the robustness of the proposed DNMARCOS method, a comparative analysis was made with the extant MCDM methods, and SCC (Spearman's correlation coefficient) coefficient and WS (Wojciech Sałabun) coefficients were calculated. The final results show the justification for the development of the original and innovative DNMARCOS model.
Rocznik
Strony
art. no. e173, 2022
Opis fizyczny
Bibliogr. 81 poz., rys., tab., wykr.
Twórcy
  • Faculty of Civil Engineering, University of Montenegro, Dzordza Vašingtona bb, 81000 Podgorica, Montenegro
autor
  • Department of Engineering Mathematics, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522302, India
  • Faculty of Transport and Traffic Engineering, University of East Sarajevo, Vojvode Mišiša 52, 74000 Doboj, Bosnia and Herzegovina
autor
  • Agricultural Faculty, Bijeljina University, 76300 Bijeljina, Bosnia and Herzegovina
  • Institute of Sustainable Construction, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
Bibliografia
  • [1] Oesterreich TD, Teuteberg F. Understanding the implications of digitisation and automation in the context of industry 4.0: a tri-angulation approach and elements of a research agenda for the construction industry. Comput Ind. 2016;83:121–39.
  • [2] Ulubeyli S, Arslan V, Uygun O, Demir IH. Construction equipment selection through scenario-based FDEA: truck-mixer drums. KSCE J Civ Eng. 2021;25(8):2794–808.
  • [3] Zhang F, Ju Y, Gonzalez EDS, Wang A. SNA-based multi-criteria evaluation of multiple construction equipment: a case study of loaders selection. Adv Eng Inform. 2020;44: 101056.
  • [4] Davila Delgado JM, Oyedele L, Ajayi A, Akanbi L, Akinade O, Bilal M, Owolabi H. Robotics and automated systems in construction: understanding industry-specific challenges for adoption. J Build Eng. 2019;26: 100868.
  • [5] Palma R, Torrent J, Pérez-Aparicio JL, Ripoll L. Reliability-based dynamical design of a singular structure for high energy physics experiments. Archiv Civ Mech Eng. 2018;18(1):256–66.
  • [6] Kazaz A, Ulubeyli S, Arslan A. Quantification of fresh ready-mix concrete waste: order and truck-mixer based planning coefficients. Int J Constr Manag. 2018. https://doi.org/10.1080/15623599.2018.1462444.
  • [7] Malekipour M, Moodi F. A novel approach to improve quality of delivered concrete using slump estimations of the ready-mixed concrete (RMC) truck mixer. J Build Eng. 2021;44: 103361.
  • [8] Wallevik JE, Wallevik OH. Concrete mixing truck as a rheometer. Cem Concr Res. 2020;127: 105930.
  • [9] Fang Q, Qiu H, Sun J, Dal Lago B, Jiang H. Performance study of precast reinforced concrete shear walls with steel columns containing friction-bearing devices. Arch Civ Mech Eng. 2021. https://doi.org/10.1007/s43452-021-00261-z.
  • [10] Yager RR. Categorization in multi-criteria decision making. Inf Sci. 2018;460–461:416–23.
  • [11] Da Silva RF, Bellinello MM, De Souza GFM, Antomarioni S, Bevilacqua M, Ciarapica FE. Deciding a Multicriteria Decision-Making (MCDM) Method to Prioritize Maintenance Work Orders of Hydroelectric Power Plants. Energies. 2021;14(24):8281.
  • [12] Corrente S, Greco S, Slowinski R. Multiple criteria hierarchy process with ELECTRE and PROMETHEE. Omega. 2013;41(5):820–46.
  • [13] Corrente S, Figueira JR, Greco S, Slowinski R. A robust ranking method extending ELECTRE III to hierarchy of interacting criteria, imprecise weights and stochastic analysis. Omega. 2017;73:1–17.
  • [14] Bilbao-Terol A, Arenas-Parra M, Alvarez-Otero S, Cañal-Fernández V. Integrating corporate social responsibility and financial performance. Manag Dec. 2018;57:324–48.
  • [15] Bilbao-Terol A, Arenas-Parra M, CanalFarnandez V, Antomil-Ibias J. Using TOPSIS for assessing the sustainability for government bond funds. Omega. 2014;49(12):1–17.
  • [16] Opricovic S, Tzeng GH. Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res. 2004;156(2):445–55.
  • [17] Brauers WKM, Zavadskas EK. Project management by MULTI-MOORA as an instrument for transition economies. Technol Econ Dev Econ. 2010;16(1):5–24.
  • [18] Liao H, Wu X. DNMA: a double normalization-based multiple aggregation method for multi-expert multi-criteria decision making. Omega. 2020. https://doi.org/10.1016/j.omega.2019.04.001.
  • [19] Stević Ž, Pamučar D, Puška A, Chatterjee P. Sustainable supplier selection in healthcare industries using a new MCDM method:measurement alternatives and ranking according to compromise solution (MARCOS). Comput Ind Eng. 2020. https://doi.org/10.1016/j.cie.2019.106231.
  • [20] Zavadskas EK, Turskis Z. A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technol Econ Dev Econ. 2010;16(2):159–72.
  • [21] Pamučar D, Ćirović G. The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC). Expert Syst Appl. 2015;42(6):3016–28.
  • [22] Zavadskas EK, Turskis Z, Antucheviciene J, Zakarevicius A. Optimization of weighted aggregated sum product assessment. Elektronika ir elektrotechnika. 2012;122(6):3–6.
  • [23] Gorcun OF, Senthil S, Küçükönder H. Evaluation of tanker vehicle selection using a novel hybrid fuzzy MCDM technique. Decis Mak Appl Manag Eng. 2021;4(2):140–62.
  • [24] Biswas T, Saha P. Selection of commercially available scooters by new MCDM method. Int J Data Netw Sci. 2019;3(2):137–44.
  • [25] Gašparík J, Motyčka V, Šťastný P, Szalayová S. Multi-criteria optimization of mechanized earth processes and its impact on economic and environmental sustainability. Sustainability. 2022;14(1):78.
  • [26] Görçün ÖF. Evaluation of the selection of proper metro and tram vehicle for urban transportation by using a novel integrated MCDM approach. Sci Prog. 2021;104(1):1–18.
  • [27] Sangiorgio V, Martiradonna S, Fatiguso F, Lombillo I. Augmented reality based-decision making (AR-DM) to support multi-criteria analysis in constructions. Autom Constr. 2021;124: 103567.
  • [28] Canbulut G, Köse E, Arik OA. Public transportation vehicle selection by the grey relational analysis method. Public Trans. 2022. https://doi.org/10.1007/s12469-021-00271-3 (Online first articles).
  • [29] Khan F, Ali Y, Khan AU. Sustainable hybrid electric vehicle selection in the context of a developing country. Air Qual Atmos Health. 2020;13(4):489–99.
  • [30] Keshavarz Ghorabaee M, Amiri M, Zavadskas EK, Antuche-viciene J. A new hybrid fuzzy MCDM approach for evaluation of construction equipment with sustainability considerations. Arch Civ Mech Eng. 2018;18(1):32–49. https://doi.org/10.1016/j.acme.2017.04.011.
  • [31] Sonar HC, Kulkarni SD. An integrated AHP-MABAC approach for electric vehicle selection. Res Transp Bus Manag. 2021;41:100665.
  • [32] Temiz I, Calis G. Selection of construction equipment by using multi-criteria decision making methods. Procedia Eng. 2017;196:286–93.
  • [33] Öztaysi B, Onar SÇ, Kahraman C. Electric vehicle selection by using fuzzy KEMIRA. Mult Val Logic Soft Comput. 2021;37(3–4):437–61.
  • [34] Ma Z, Ren Y, Xiang X, Turk Z. Data-driven decision-making for equipment maintenance. Autom Constr. 2020;112: 103103.
  • [35] Biswas T, Chatterjee P, Choudhuri B. Selection of commercially available alternative passenger vehicle in automotive environment. Oper Res Eng Sci Theory Appl. 2020;3(1):16–27.
  • [36] Onar SÇ, Kahraman C, Öztayşi B. A new hesitant fuzzy KEMIRA approach: an application to adoption of autonomous vehicles. J Intell Fuzzy Syst. 2021;42(1):109–20.
  • [37] Milosavljević M, Kasalica S, Matić M. The selection of optimal transport vehicle using multi criteria decision making methods. In: ICMNEE 2018, the 2nd international conference on management, engineering and environment, 2018. pp. 52–66.
  • [38] Sarkar A, Ghosh A, Karmakar B, Shaikh A, Mondal SP. Application of fuzzy TOPSIS algorithm for selecting best family Car. In: 2020 international conference on decision aid sciences and applications (DASA), pp. 59–63. https://doi.org/10.1109/DASA51403.2020.9317175.
  • [39] Altuntas S, Dereli T, Kemal YM. Evaluation of excavator technologies: application of data fusion based MULTIMOORA methods. J Civ Eng Manag. 2015;21(8):977–97.
  • [40] Ziemba P. Selection of electric vehicles for the needs of sustainable transport under conditions of uncertainty—a comparative study on fuzzy MCDA methods. Energies. 2021;14(22):7786.
  • [41] Starčević S, Bojović N, Junevičius R, Skrickij V. Analytical hierarchy process method and data envelopment analysis application in terrain vehicle selection. Transport. 2019;34(5):600–16.
  • [42] Pamučar DS, Savin LM. Multiple-criteria model for optimal off-road vehicle selection for passenger transportation: BWM-COPRAS model. Vojnotehnički glasnik. 2020;68(1):28–64.
  • [43] Božanić D, Milić A, Tešić D, Salabun W, Pamučar D. D numbers-FUCOM-fuzzy RAFSI model for selecting the group of construction machines for enabling mobility. Facta Univ Ser Mech Eng. 2021;19(3):447–71.
  • [44] Özdağoğlu A, Öztaş GZ, Keleş MK, Genç V. An integrated PIPRECIA and COPRAS method under fuzzy environment: a case of truck tractor selection. Alphanumer J. 2021;9(2):269–98.
  • [45] Das MC, Pandey A, Mahato AK, Singh RK. Comparative performance of electric vehicles using evaluation of mixed data. Opsearch. 2019. https://doi.org/10.1007/s12597-019-00398-9.
  • [46] Babar AHK, Ali Y, Khan AU. Moving toward green mobility: overview and analysis of electric vehicle selection: Pakistan a case in point. Environ Dev Sustain. 2022. https://doi.org/10.1007/s10668-020-01101-5.
  • [47] Yavuz M, Oztaysi B, Cevik Onar S, Kahraman C. Multi-criteria evaluation of alternative-fuel vehicles via a hierarchical hesitant fuzzy linguistic model. Expert Syst Appl. 2015;42(5):2835–48.
  • [48] Oztaysi B, Cevik Onar S, Kahraman C, Yavuz M. Multi-criteria alternative-fuel technology selection using interval-valued intuitionistic fuzzy sets. Transport Res Part D Trans Environ. 2017;2017(53):128–48.
  • [49] Erdogan M, Kaya İ. Evaluating alternative-fuel busses for public transportation in Istanbul using interval type-2 fuzzy AHP and TOPSIS. J Mult Val Logic Soft Comput. 2016;26(6):625–42.
  • [50] Kurda R, de Brito J, Silvestre JD. CONCRETop-a multi-criteria decision method for concrete optimization. Environ Impact Assess Rev. 2019;74:73–85. https://doi.org/10.1016/j.eiar.2018.10.006.
  • [51] Kurda R, de Brito J, Silvestre JD. CONCRETop method: Optimization of concrete with various incorporation ratios of fly ash and recycled aggregates in terms of quality performance and life-cycle cost and environmental impacts. J Clean Prod. 2019;226:642–57. https://doi.org/10.1016/j.jclepro.2019.04.070.
  • [52] Hafez H, Kurda R, Al-Ayish N, Garcia-Segura T, Cheung WM, Nagaratnam B. A whole life cycle performance-based ECOnomic and ECOlogical assessment framework (ECO2) for concrete sustainability. J Clean Prod. 2021;292: 126060. https://doi.org/10.1016/j.jclepro.2021.126060.
  • [53] Hafez H, Kassim D, Kurda R, Silva RV, de Brito J. Assessing the sustainability potential of alkali-activated concrete from electric arc furnace slag using the ECO2 framework. Constr Build Mater. 2021;281: 122559. https://doi.org/10.1016/j.conbuildmat.2021. 122559.
  • [54] Schneider-Marin P, Lang W. A temporal perspective in Eco2 building design. Sustainability. 2022;14(10):6025. https:// doi.org/10.3390/su14106025.
  • [55] Schneider-Marin P, Winkelkotte A, Lang W. Integrating environmental and economic perspectives in building design. Sustainability. 2022;14(8):4637. https://doi.org/10.3390/su14084637.
  • [56] Revilla-Cuesta V, Skaf M, Espinosa AB, Ortega-López V. Multi-criteria feasibility of real use of self-compacting concrete with sustainable aggregate, binder and powder. J Clean Prod. 2021;325: 129327. https://doi.org/10.1016/j.jclepro.2021.129327.
  • [57] Rashid K, Rehman UM, de Brito J, Ghafoor H. Multi-criteria optimization of recycled aggregate concrete mixes. J Clean Prod. 2020;276: 124316. https://doi.org/10.1016/j.jclepro.2020.124316.
  • [58] Polo-Mendoza R, Martinez-Arguelles G, Peñabaena-Niebles R. A multi-objective optimization based on genetic algorithms for the sustainable design of warm mix asphalt (WMA). Int J Pavement Eng. 2022. https://doi.org/10.1080/10298436.2022.2074417 (article in press).
  • [59] Tushar Q, Bhuiyan MA, Zhang G, Maqsood T, Tasmin T. Application of a harmonized life cycle assessment method for supplementary cementitious materials in structural concrete. Constr Build Mater. 2022;316: 125850. https://doi.org/10.1016/j.conbuildmat. 2021.125850.
  • [60] Çakır E, Taş MA, Ulukan Z. Neutrosophic fuzzy MARCOS approach for sustainable hybrid electric vehicle assessment. In: 2021 IEEE International conference on systems, man and cybernetics (SMC), vol. 2021, pp. 423–3428. https://doi.org/10.1109/SMC52423.2021.9659199.
  • [61] Pamučar D, Ecer F, Deveci M. Assessment of alternative fuel vehicles for sustainable road transportation of United States using integrated fuzzy FUCOM and neutrosophic fuzzy MARCOS methodology. Sci Total Environ. 2021;788: 147763.
  • [62] Stević Z, Kotorić M, Stojić G, Sremac S. Selection of delivery vehicle using integrated objective-subjective MCDM model. In: Proceedings of 25th international scientific conference. Transport Means 2021, pp. 309–315.
  • [63] Kovač M, Tadić S, Krstić M, Bouraima MB. Novel spherical fuzzy MARCOS method for assessment of drone-based city Logistics concepts. Complexity. 2021. https://doi.org/10.1155/2021/2374955 (Article ID 2374955).
  • [64] Ecer F. A consolidated MCDM framework for performance assessment of battery electric vehicles based on ranking strategies. Ren Sustain Energy Rev. 2021;2021(143): 110916.
  • [65] Mahmutagić E, Stević Ž, Nunić Z, Chatterjee P, Tanackov I. An integrated decision-making model for efficiency analysis of the forklifts in warehousing systems. Facta Univ Ser Mech Eng. 2021;19(3):537–53.
  • [66] Stević Ž, Brković N. A novel integrated FUCOM-MARCOS model for evaluation of human resources in a transport company. Logistics. 2020;4(1):4. https://doi.org/10.3390/logistics4010004.
  • [67] Bouraima MB, Stević Ž, Tanackov I, Qiu Y. Assessing the performance of Sub-Saharan African (SSA) railways based on an integrated entropy-MARCOS approach. Oper Res Eng Sci Theory Appl. 2021;4(2):13–35.
  • [68] Bakır M, Akan Ş, Özdemir E. Regional aircraft selection with fuzzy PIPRECIA and fuzzy MARCOS: a case study of the Turkish airline industry. Facta Univ Ser Mech Eng. 2021;19(3):423–45.
  • [69] Mešić A, Miškić S, Stević Ž, Mastilo Z. Hybrid MCDM solutions for evaluation of the logistics performance index of the Western Balkan countries. Economics. 2022;10(1):13–34.
  • [70] Vojinović N, Sremac S, Zlatanović D. A novel integrated fuzzy-rough MCDM model for evaluation of companies for transport of dangerous goods. Complexity. 2021. https://doi.org/10.1155/2021/5141611 (article ID 5141611).
  • [71] Blagojević A, Kasalica S, Stević Ž, Tričković G, Pavelkić V. Evaluation of safety degree at railway crossings in order to achieve sustainable traffic management: a novel integrated fuzzy MCDM model. Sustainability. 2021;13(2):832.
  • [72] Keshavarz-Ghorabaee M, Amiri M, Zavadskas EK, Turskis Z, Antucheviciene J. Determination of objective weights using a new method based on the removal effects of criteria (MEREC). Symmetry. 2021;13:525.
  • [73] Rani P, Mishra AR, Saha A, Hezam IM, Pamucar D. Fermatean fuzzy Heronian mean operators and MEREC-based additive ratio assessment method: an application to food waste treatment technology selection. Int J Intell Syst. 2022;37(3):2612–47.
  • [74] Keshavarz-Ghorabaee M. Assessment of distribution center locations using a multi-expert subjective–objective decision-making approach. Sci Rep. 2021;11:19461.
  • [75] Trung DD, Thinh HX. A multi-criteria decision-making in turning process using the MAIRCA, EAMR, MARCOS and TOPSIS methods: a comparative study. Adv Prod Eng Manag. 2021;16(4):443–56.
  • [76] Simić V, Ivanović I, Đorić V, Torkayesh AE. Adapting urban transport planning to the COVID-19 pandemic: an integrated fermatean fuzzy model. Sustain Cities Soc. 2022;79: 103669.
  • [77] Keshavarz-Ghorabaee M, Zavadskas EK, Amiri M, Esmaeili A. Multi-criteria evaluation of green suppliers using an extended WASPAS method with interval type-2 fuzzy sets. J Clean Prod. 2016;137:213–29.
  • [78] Kumar R, Bhattacherjee A, Singh AD, Singh S, Pruncu CI. Selection of portable hard disk drive based upon weighted aggregated sum product assessment method: a case of Indian market. Meas Control. 2020;53(7–8):1218–30.
  • [79] Yazdani M, Zarate P, Zavadskas EK, Turskis Z. A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Manag Dec. 2019;57:2501–19.
  • [80] Zhang WY, Wei ZW, Wang BH, Han XP. Measuring mixing patterns in complex networks by Spearman rank correlation coefficient. Phys A Stat Mecha Its Appl. 2016;451:440–50.
  • [81] Sałabun W, Urbaniak K. A new coefficient of rankings similarity in decision-making problems. In: International conference on computational science, 2020. pp. 632–645, Springer, Cham.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60c120f6-4c09-41a9-83dd-cb7002eb9675
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.